
A Tool Environment for Aspectual Patterns in UML

Imed Hammouda, Mika Katara, and Kai Koskimies
Institute of Software Systems

Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere, Finland

{imed.hammouda, mika.katara, kai.koskimies}@tut.fi

Abstract

An aspectual pattern is a pattern that captures a generic
aspect. It is argued that the realization of an aspect in
the form of a pattern is beneficial because various mecha-
nisms available in generic pattern-based environments be-
come available for aspects as well. These benefits follow
mostly from the fact that the structural information concern-
ing an aspect is clearly defined and preserved (as a pattern)
separately from the actual system description. We demon-
strate the concept of an aspectual pattern and its applica-
tion in the case of the JUnit testing framework. A prototype
tool environment supporting aspectual patterns in UML has
been developed.

1 Introduction

Modeling has become an essential practice in software
development, allowing complex systems to be understood
at a high level of abstraction. UML (Unified Modeling Lan-
guage [24]) has been widely adopted as de facto standard
notation for expressing software models. However, soft-
ware systems are inherently multi-dimensional in the sense
that no single viewpoint or structuring can fully explain a
system, even at a high level of abstraction. In general, the
need for overlapping viewpoints in system descriptions has
been widely acknowledged (e.g., [23]). Thus, we can under-
stand and manage software systems best in terms of model
slices, each covering a particular viewpoint only. This has
been the basic motivation for aspect-oriented development
[4], which strives for describing the system properties rele-
vant for a particular viewpoint separately, and merge these
descriptions by automated means into a comprehensive sys-
tem description. Since we are here interested in modeling,
we assume static merging (weaving).

On the other hand, patterns have emerged in software en-
gineering as a concept for expressing solutions to recurring
problems. The general aim of the pattern movement is to

raise the quality level of software systems by documenting
solutions that are known to yield certain desired quality at-
tributes in many existing systems. Depending on the nature
of the problem, we may speak of analysis patterns [8], archi-
tectural patterns [2], design patterns [2], coding patterns [2]
etc. Essentially, a pattern describes a collection of software
entities (like, say, UML modeling elements) which collabo-
rate in a certain way to solve a stated problem. A pattern is
described independently of any particular system, in terms
of generic roles which are replaced by actual software el-
ements when the pattern is applied. If we detach the pure
structural character of a pattern from the purpose of the pat-
tern, a pattern can be simply understood as an arrangement
of interrelated roles of software elements, crosscutting any
other structuring of a system in which the pattern is applied.

Since an aspect can be viewed as a collection of software
elements relevant for a particular concern, from a structural
point of view the concepts of an aspect and a pattern come
close to each other: both capture a crosscutting slice of a
system that is logically meaningful for the understanding of
the system. The weaving of an aspect into a full system de-
scription corresponds to the binding of the roles of a pattern
to the concrete elements of a system. Thus, the idea of uni-
fying the concepts of an aspect and a pattern seems in many
ways attractive. In particular, using the tool technology de-
veloped for patterns we can achieve a number of advantages
in the context of aspects. These include:

• Aspects can be weaved interactively and incremen-
tally, under the guidance of the designer. This makes
the weaving process open to the designer, and allows
for customizable weaving.

• Weaving is not a one-shot action but it can be done
partially if desired. This is useful if an aspect needs to
be introduced but all the participants of the aspect are
not available yet.

• An individual aspect can be easily viewed or high-
lighted in a system. This is useful for generating views

that help to understand the system.

• The information about an aspect appearing in a sys-
tem is preserved and maintained. If the system is
later changed so that an aspect is affected, the tool
keeps track of the properties required by the aspect and
shows possible violations of these properties.

Briefly, an aspectual pattern is a pattern that represents
an aspect. We have built a prototype tool environment
which supports aspectual patterns in UML modeling, us-
ing a generic pattern engine [10] as the core component of
the environment. In this paper, we demonstrate how such a
tool environment can be exploited for aspects.

The remaining of the paper is organized as follows. In
Section 2 we briefly discuss the main characteristics of pat-
terns, aspects, and aspectual patterns. In Section 3 we
present in more detail the UML-based pattern concept we
have used in this work. In Section 4 we apply aspectual
patterns in developing the design model of the JUnit test-
ing framework. In Section 5, we discuss our prototype tool
environment and show how it is used in applying aspectual
patterns. Related work is discussed in Section 6. Finally, in
Section 7 conclusions are drawn and possible future work is
highlighted.

2 Basic Concepts

In this section, we review the main technologies used
in this paper: patterns and aspects. We show how the two
concepts can be merged into so-called aspectual patterns.

2.1 Patterns

A pattern is an arrangement of software elements for
solving a particular problem. In the sequel we will give a
simple structural characterization of a generic pattern con-
cept. To be able to define a pattern independently of any
particular system, a pattern is defined in terms of element
roles rather than concrete elements; a pattern is instantiated
in a particular context by binding the roles to concrete el-
ements. A role has a type, which determines the kind of
software elements that can be bound to the role; the set of
all the role types is called the domain of the pattern. Here
we assume that the domain of a pattern is UML; that is, the
roles are bound to UML model elements.

Each role may have a set of constraints. Constraints are
structural conditions that must be satisfied by the model el-
ement bound to a role. For example, a constraint of associa-
tion role P may require that the association bound to P must
appear between the classes bound to certain other roles Q
and R.

A cardinality is defined for each role. The cardinality of
a role gives the lower and upper limits for the number of

the instances of the role in the pattern. For example, if an
operation role has cardinality 0..1, the operation is optional
in the pattern, because the lower limit is 0.

2.2 Aspects

In software engineering, separation of concerns refers
to the ability to identify those parts of software artifacts
that are relevant to a particular concept, goal, task, or pur-
pose. Concerns are the primary motivation for organizing
and decomposing software into smaller, more manageable
and comprehensible parts. Aspect-oriented software devel-
opment (AOSD) [4], which is a direct implication of the
separation of concerns principle, has been proposed as a
solution to cope with the characteristics of software that
are difficult to capture with other development approaches
such as object-oriented development. These characteristics
are basically the different concerns cutting across several
classes or other units of decomposition.

Aspect-oriented programming (AOP) [18] is a program-
ming paradigm implementing the ideas of aspect orienta-
tion. AOP organizes the crosscutting concerns into separate
modules called aspects. AspectJ [1] has been the most pop-
ular language for AOP. AspectJ is a general-purpose aspect-
oriented extension to Java that provides support for modular
implementation of a range of crosscutting concerns.

At the design level, there have been many proposals on
how to model aspects in UML, for instance [3, 17]. Using
current modeling languages, such as UML, it is often hard
to identify the model elements that are relevant to certain
concerns only. Similar problems arise when superimposing
existing models with new model elements. In this regard,
it is argued that AOSD techniques can be useful for model
development, in general.

Traditionally, AOP has been applied to weave new
functionality into programs statically by instrumenting the
source code. Recently, dynamic weaving during runtime
has become a more flexible option supported by several
tools. At the modeling level, however, static weaving re-
mains a useful approach since we usually do not want to get
into details of specific implementation mechanisms, such as
the moment of actual code weaving.

2.3 Aspectual Patterns

An aspectual pattern is a pattern that captures an aspect.
When implemented as patterns, aspects are represented us-
ing a role structure that can be instantiated and weaved into
base models (applications). The weaving corresponds to the
binding of the roles: each role stores the information of a
joint point. The constraints associated with a role determine
the context where the aspect may appear, and the constraints
can be used to check whether the aspect, implemented by

UML Package

UML Class

UML Operation

UML Attribute

UML Association

UML Association End

UML Realization

UML Dependency

Stereotype
 Abstract
 Visibility
 Inheritance
 Return Type
 Parameter
 Overriding
 Type
Multiplicity
 Navigability
Aggregation
 Participant

Role type

Constraint

x

x

x

x

x

x

x

x

x

x

x

x

x

x
 x

x
 x
 x

x

x
 x

x

x

Figure 1. Pattern roles and constraints

the pattern, is correctly weaved. In contrast to traditional
weaving, however, the weaving of aspectual patterns is con-
sidered as an interactive, incremental process where the join
points are located under the guidance of a tool, rather than
in a fully automated fashion. Aspect overlapping can be
represented and implemented in a straightforward way us-
ing role-based pattern composition techniques: a model el-
ement can play different roles in different aspectual pat-
terns. Another important benefit of bridging patterns and
aspects for AOSD is the readily available tool technology
for pattern-oriented development.

3 Aspectual Patterns for UML

In order to apply aspectual patterns at the design level
for model development, we have defined pattern roles to
represent a subset of the UML metamodel. Therefore, the
domain of the patterns is UML. In this work, however, we
will restrict the application of aspectual patterns to UML
class diagrams. For this, we have specified the roles shown
in Figure 1. Roles are used to represent different kinds
of model elements in UML class diagrams. For example,
a ’UML Package’ role stands for model elements of type
UML package.

In addition, Figure 1 shows the constraints that can be
associated with the roles and which constraints can be
applied on which roles. Constraints are used to enforce
certain properties in the constructed UML class diagrams.
For instance, the ’Inheritance’ constraint can be used to en-
force a generalization-specialization relationship between
two elements bound to UML class roles. A role can be
associated with various kinds of constraints. However, a
constraint makes sense only when applied to a proper role
kind. Attaching a constraint to a role is optional and should
be used only if we want to enforce certain model properties.
For example, the ’Stereotype’ constraint, which stands for

a stereotype value on a model element, can be attached
to almost any role; whereas the ’Multiplicity’ constraint,
which specifies the value of a multiplicity, applies only to
’UML Association End’ roles since it does not make sense
in the case of other role types.

Example:

In order to elevate the comprehensiveness of pattern
structures, several visual specification techniques, like [6,
22], have been suggested. Figure 2 shows our notation
for visual pattern specification. The figure depicts a role
diagram of the Command design pattern [9]. The nodes,
marked with white color, depict the pattern roles. The In-
voker role, for example, stands for any concrete element
that may play the class role Invoker, the type of the role is
specified on top of the role name. The edges in the upper
part of the figure denote the dependencies between the roles.
There are two kinds of dependencies: 1) the dependency
from role execute to the role Command, which is marked
with a diamond-ended line, represents the containment re-
lationship between the elements that may play these two
roles, 2) the dependency from role execute to role action,
which is marked with a light-arrow-ended line, stands for
a logical relationship. In this case, any element that plays
the role execute should call the corresponding element that
plays the role action. The cardinality symbol (’1’ for exactly
one, ’?’ for optional, ’*’ for zero or more, ’+’ for at least
one) that comes along with the role name indicates the al-
lowed number of concrete elements that may play that role.
For instance, there should be at least one element that plays
the ConcreteCommand role. If not otherwise indicated, the
cardinality of the role is 1.

In order to show how the Command pattern can be used,
the bottom part of the figure gives a concrete example bind-
ing (weaving). The concrete element Application, repre-

<< UML Class >>

Invoker

Receiver

<< UML Class >>

<< UML Operation >>

action

<< UML Class >>

Command

<< UML Operation >>

execute

<< UML Operation >>

execute

ConcreteCommand

+

<< UML Class >>

Application

saveAction

File

openAction

Command

execute

execute

execute

SaveFileCommand

OpenFileCommand

1

2

Dependency
 Containment

Binding
Prerequisite for

Pattern role

Concrete element

overrides

inherits

invoked by

uses

corresponds to

Figure 2. Role diagram of the Command pat-
tern

sented by a dark-grey node, plays the role of Invoker, this
is marked by the double-arrowed line between Application
and Invoker. There are two elements that play the role Con-
creteCommand, this is a direct implication of the ’+’ cardi-
nality symbol associated with this role. As a next weaving
step, the user might want to provide a third ConcreteCom-
mand element, named NewFileCommand, for creating new
files. In case several concrete elements play the same pat-
tern role, the order of the binding is indicated by an inte-
ger index. Moreover, the dark-headed arrows in this part of
the figure denote the order how the bindings should be per-
formed. For instance, the binding between the concrete el-
ement Application and the role Invoker is a prerequisite for
the binding of the concrete element Command to its role.

4 Applying Aspectual Patterns

4.1 Developing JUnit Design Model

Aspectual patterns can be used to superimpose models.
Assuming that each pattern represents a specific model part,
is is possible to apply the patterns one after another to form
a larger model out of the parts. Usually, the final model
is formed by accumulating the desired parts only. Because
every pattern encapsulates a well-defined aspect, a desired

aspect can be weaved into the existing model by applying
the pattern it encapsulates. The undesired aspects are left
out simply by ignoring the patterns they represent. Aspec-
tual patterns may have overlapping roles. In this situation, a
pattern role may be bound to a concrete model element that
has previously been bound to another role. The overlapping
roles define how the individual aspects relate to each other.

As an example, let us consider the case of the JUnit [16]
design model. JUnit is a popular open-source framework
for implementing unit testing of Java programs. The design
of the framework reflects three different concerns: creat-
ing tests, defining a generic test interface, and the ability to
run multiple tests. Some of these concerns are defined in
terms of smaller goals. These goals have been discussed in
[16]. We refer to each of these concerns as a separate as-
pect. Therefore, in this work, the terms concern and aspect
are used interchangeably.

The first concern, named ’Creating tests’ is defined by
three goals: representing a test case as an object, giving
the tester a convenient place to put her fixture code and her
test code, and reporting the test results. The first goal is
achieved by applying the Command design pattern which
encapsulates the test request as an object (test case) and uses
the method execute (called run) to execute tests. For achiev-
ing the second goal, the Template Method design pattern is
used. The pattern lets concrete tests redefine certain steps
of the testing algorithm. The third goal uses the Collecting
Parameter idiom to store the test results into an object that
is passed to the run method as a parameter.

The second concern, called ’Generic test interface’, con-
sists of two smaller goals: making all the test cases look
the same from the point of view of the invoker of the test;
and avoiding the creation of a subclass (of the test case)
for each testing method. For handling the first problem, the
class version of the Adapter design pattern is used. The pat-
tern adapts the testing method to the command interface.
The second goal is realized through the Pluggable Selec-
tor idiom. This solution uses Java reflection API to invoke
the testing method from a string representing the method’s
name.

The last concern, which we call ’Supporting test suites’,
is implemented using the Composite design pattern. The
pattern treats single or multiple test cases uniformly. The
run method is therefore used to execute either single test
cases or collections of them.

Based on the discussion above, the design model of the
JUnit can be described in terms of three aspects. Each of
these aspects can be separately implemented as an aspectual
pattern. In this way, every aspectual pattern corresponds to
a separate feature in the design model of the framework.
Generally, one feature may be composed of a set of smaller
sub-features. However, we want to consider the larger fea-
tures since often a sub-feature alone does not make much

sense. In the case of JUnit, the Collecting Parameter solu-
tion is better understood in the context of the bigger con-
cern.

In the case of JUnit, the aspectual patterns that we have
identified consisted of design patterns and idioms. In typical
situations, however, aspectual patterns consist of any other
kind of solutions. In other words, an aspectual pattern can
consist of any arrangement of roles that is used to represent
a given aspect in a system.

Test

run(TestResult)

TestSuite

run(TestResult)

addTest(Test)

TestCase

run(TestResult)

runTest()

setUp()

tearDown()

fName

runTest()

TestResult

Command

Template Method

Collecting Parameter

Adapter (Class)

Pluggable Selector

C
o
m

p
o
s
it
e
:
L
e
a
f

Composite: Component

Composite

Creating tests

Generic test interface

Supporting test suites

Figure 3. Aspectual patterns in JUnit

Figure 3 shows the overall architecture of the JUnit
framework. According to the original documentation [16],
the design is achieved by applying four design patterns and
two idioms. From an AOP perspective, some of these so-
lutions can be regrouped under the same concern. The two
design patterns Command and Template Method, and the
idiom Collecting Parameter, for instance, form a larger con-
cern called ’Creating tests’. The overall JUnit design is
achieved by starting a design from scratch. Aspectual pat-
terns are then applied one after another, until the final archi-
tecture of the system is formed.

Composite

3

Supporting test suites

Adapter
 Pluggable

Selector

2

Generic test interface

Command

Template

Method

Collecting

Parameter

1

Creating tests

Figure 4. Steps in JUnit model design

Figure 4 shows a typical order of applying JUnit as-
pectual patterns. Firstly, the ’Creating tests’ pattern is ap-
plied in order to create and structure the framework Test-
Case class. Pattern ’Generic test interface’ is then applied
to provide a generic interface for using the TestCase class.

Finally, by applying the ’Supporting test suites’ aspectual
pattern, support for test suites is added. Each time a pattern
is applied, new model elements are weaved into the existing
design.

Using aspectual patterns, it is possible to generate spe-
cialized views of a model. By constructing a specialized
view of a model, we mean slicing the model into parts that
correspond to the patterns applied. A model can be sliced
in various ways. Ideally, each slice represents one or more
aspects in the original design model. Therefore, a slice of
a model can be regarded as a combination of the set of fea-
tures defining that model. An aspect in the original model
may or may not be included in the slice. In the case of JU-
nit, it is possible to highlight certain slices in the design that
correspond to specific features. This helps in understanding
the model.

As we have seen earlier, design models evolve as new
aspects are added and other are dropped out. In the case of
adaptive maintenance, models can be extended to adapt to
new platforms or support new features. In many cases, such
maintenance activities can be anticipated during the design
phase. In such situations, aspectual patterns can be used to
encapsulate the maintenance interface. Each pattern models
a separate maintenance aspect. Considering the JUnit case,
aspectual patterns may be used to describe how the design
model of the framework can be extended. More specifi-
cally, there are pattern roles bound to the base model ele-
ments presented in Figure 3. These roles are used to define
join points for other roles used to annotate the extension.
The architects of the JUnit framework, for example, may
document the extension points and the maintenance tasks
required for supporting other types of testing as well.

4.2 Other Usage Scenarios

In this work, we have shown how aspectual patterns can
be used to develop the design model of the JUnit testing
framework. However, the approach tends to be more bene-
ficial when applied to more complex case studies.

Slicing a model can be used to solve various kinds of
problems. When modeling complex systems, design mod-
els can be too complex and may become difficult to un-
derstand. Model slicing can be used in this case to group
related features into smaller submodels. In [11], we have
shown how specialized views of models may enhance sys-
tem comprehensibility.

Aspectual patterns can be applied to encapsulate the
maintenance interface of design models. Each pattern is
used to represent a separate maintenance aspect. In this re-
gard, pattern roles are utilized to document the model exten-
sion points and the way models can evolve. In [12], we have
shown how patterns can be used to document maintenance
tasks. In this work, we show how the idea of patterns can

be applied early in the design phase in order to document
model maintenance tasks.

Preserving the bindings between pattern roles and con-
crete elements represents an important advantage. This fea-
ture can be used to review which model elements have been
weaved to the base model. In the case of model mainte-
nance, for example, it is possible to control the way models
have been updated. This can be used as a basis for support-
ing undo operations of maintenance actions.

5 Implementation

5.1 Tool Platform

MADE [13] is an experimental platform for pattern-
driven UML modeling. The platform is the result of the
integration of a number of different tools. JavaFrames
[10] and Rational Rose [21] represent the key components
of the integration. JavaFrames is a pattern-oriented task-
based development tool built on top of the Eclipse [5] plat-
form. Rational Rose is mainly used for designing and
processing UML models. The communication between
JavaFrames and Rational Rose is achieved through a UML
model processing platform, xUMLi [20], providing a tool-
independent API for accessing the UML models.

The MADE environment realizes aspectual patterns in
the UML domain, as explained in Section 3. MADE sup-
ports the specification of patterns, and the interactive bind-
ing of the roles of a pattern to UML model elements re-
siding in Rose. A key functionality of the environment is
provided by JavaFrames which transforms a (possibly par-
tially bound) pattern specification into a task list: every un-
bound role which can be bound in the present situation, tak-
ing into account the dependencies between the roles, be-
comes a task. Such a task can be performed in two ways
by the designer: either she points out an existing model ele-
ment to be bound to the role, or she asks the tool to generate
one before binding it to the role. For the latter purpose, a
role specification can be associated with a default element
description, used in the generation. Typically, the default
element descriptions refer to the elements bound to other
roles in the pattern. For example, a class role in an aspec-
tual pattern can have a default element description consist-
ing of the name specification of the class element generated
by default.

When a task is executed, other tasks become doable. The
tool maintains the task list, and checks that the role con-
straints are satisfied by the elements bound to the roles. In
the case of constraint violations, new corrective tasks are
shown in the task list. In many cases the tool can provide an
option to correct the model automatically. Since the UML
modeling tool, Rose, is tightly integrated with the pattern

tool, free model editing actions which result in constraint
violations are responded to by new corrective tasks, too.

In principle, any role-based pattern concept and its tool
support could be used as a platform for aspectual patterns:
a pattern concept is so generic that it can cover almost any
kind of logical slice of a model, assuming that the role
types and constraints are defined in an appropriate way. In
this respect our pattern platform does not essentially dif-
fer from other pattern tools (like [7]). However, the task-
driven interactive support for binding the roles, provided by
our environment, brings the additional benefits for aspectual
patterns, mentioned in the introduction. In particular, the
weaving (i.e., binding) process becomes open: the designer
performs simple tasks in a context she understands, rather
than a large black-box operation. In addition, the weaving
process can be easily customized: the designer can choose
between different alternative tasks, leading to different de-
sign solutions.

5.2 Applying Aspectual Patterns in MADE

MADE can be used to specify the various properties of
aspectual patterns discussed earlier. Figure 5 shows a tex-
tual representation of the ’Creating Tests’ aspectual patterns
discussed earlier. The pattern defines two UML class roles.
The Command UML class role is an element of the Com-
mand design pattern and stands for the class which declares
an interface for executing a request. The CollectingParam-
eter role is part of the Collecting Parameter idiom. The
purpose of the role is specified by the description property.
The Command role has a UML operation role called exe-
cute. The execute role is associated with a parameter con-
straint that refers to the concrete name of the instance play-
ing the CollectingParameter role. The primitiveOperation
role, contained in the Command role, is a UML operation
role that belongs to the Template Method design pattern.
There can be multiple concrete elements playing this role.
This is indicated by the ’+’ cardinality. The role is associ-
ated with an ’abstract’ constraint stating that every concrete
element playing this role must be abstract.

Figure 6 shows an overall view of MADE environment
when applying aspectual patterns to develop the design
model of JUnit. The top most part is the Rose tool. The bot-
tom part is the JavaFrames tool. JavaFrames itself is com-
posed of multiple integrated views. Aspectual Patterns are
shown in the bottom left view. The ’Creating tests’ pattern
is fully bound whereas ’Generic test interface’ is unbound
and ’Supporting test suites’ is half bound. In fact, the bot-
tom right view displays a task defined by the latter pattern.
The task is to provide a UML operation that adds a child to
the composite component. Bindings are shown in the bot-
tom middle part of the figure. This view reflects the tasks
that have been already carried out.

Command
: UML Class
(1)

execute
: UML Operation
(1)

parameter
: Constraint

 commandName
: UML Attribute
(1)

type
: Constraint

primitiveOperation
: UML Operation
(+)

abstract
: Constraint

CollectingParameter
: UML Class
(1)

Roles

defaultClassName:
AbstractCommand

description
: Declares the interface how to

execute the operation.

description:
 The execute method.

value
: <#:/CollectingParameter.i.shortName>

description:
 Name of the command.

value
:
String
.

description
: A primitive method to be

overriden by subclasses.

value
: true

description
: An object passed to methods in

order to collect information from those

methods.

Properties

Aspectual Pattern: Creating Tests

Command

Template

Method

Collecting

Parameter

Figure 5. Textual representation of the ’Creat-
ing Tests’ pattern

It is possible to highlight different features in the design
by selecting the corresponding aspectual pattern. In Figure
6, the feature for creating tests is highlighted. The model el-
ements corresponding to this feature, at the class level, are
marked with a darker color. This can enhance the under-
standability of the model since it decomposes it into multi-
ple views. The different relationships between features are
also exposed. In the example, the relationship is expressed
by the fact that the TestCase UML class inherits from the
Test class, which belongs to another feature. It should be
noted, however, that the TestCase class represents an over-
lapping model element since it treats two different features.
On the one hand, it plays the role of Command in ’Creating
Test’ pattern. On the other hand, it stands for the leaf com-
ponent in the Composite design pattern which implements
the ’Supporting test suites’ aspectual pattern.

6 Discussion and Related Work

The term aspectual patterns used in this paper is inspired
by the work on aspectual components [19]. The constructs
in both approaches are represented in terms of a graph of
nodes. In the case of [19], a graph node, called a partici-
pant, is a class in the participant graph that should be bound
to classes in other participant graphs or to a concrete class
graph. In our methodology, the graph nodes represent the
pattern roles. Roles may overlap with other roles and need
to be bound to concrete elements. The key difference be-
tween the two approaches is that aspectual components op-
erate at the programming level whereas aspectual patterns,
in this work, are used for processing static design models.

The relationship between patterns and aspects have been
identified in earlier works. An AspectJ implementation of

UML Editor

Patterns

Bindings

Tasks

Figure 6. Composing models in MADE: the
JUnit case

design patterns by Hannemann et al. [14] shows modularity
improvements in 17 of the 23 GOF patterns. It is argued
that the patterns with crosscutting nature between roles and
the concrete elements they are bound to see the most im-
provement. Rather than implementing patterns as aspects,
in this work we implement aspects using the role-based pat-
tern concept at the design level.

A similar approach to aspect-oriented modeling is pre-
sented in [3]; the author presents a subject-oriented model
design. Composition patterns, which are used to model
crosscutting behavior, can be applied to supplement the be-
havior of base model operations with pattern behavior de-
fined in the composition pattern. Compared to composition
patterns, aspectual patterns augments the base model with
new structural elements. However, we believe that MADE
could provide tool support for the ideas of [3] provided that
aspectual patterns cover behavioral information.

A tool for building and manipulating UML models with
aspects, know as UMLAUT, is presented in [15]. The tool
can be used to weave model elements into existing design.
Every weaving step is a transformation step applied to a
UML model. The weaving process is done by applying a
set of transformation rules expressed in terms of combina-
tions of predefined operators. Once applied, the effect of
the transformation rules cannot be recalled after the trans-
formation is done. In our methodology, the transformation
rules are expressed in terms of pattern roles and constraints.
The effect of the transformations rules is permanent and can
be recalled after the transformation is applied. This is done
through the persistent binding between the pattern role and

the concrete model element it is bound to.
Furthermore, in [17] an aspect-oriented view on soft-

ware architecture has been defined. The work resembles
the current work in the way which aspects are superimposed
on top of each other, or alternatively on top of an existing
base design, in a certain order. However, patterns enable
capturing reusable designs at a higher level of abstraction
than UML packages and can be customized for different do-
mains. Similar architectural views can although be used for
visualizing pattern orderings and the concerns they capture
collectively, as was done in [13].

7 Conclusions

In this paper, we have presented our approach to aspect-
oriented model development. The approach is based on
capturing development steps in so called aspectual patterns
which combine a generalized pattern concept with aspect
orientation.

Aspectual patterns are aspect-oriented not only in the
sense that they cut across several classes or components,
but also in the way they are designed. More specifically,
we aim at modularizing development steps in a way that the
design decisions treating a particular concern are grouped
into one aspectual pattern. This aspectual pattern can then
be applied to the system under development which can be
completely oblivious of those design decisions.

As discussed in Section 5, our approach is supported by
tools that are currently under development. Other possible
future work directions include integrating our ideas with
existing work on stepwise development and maintenance
support.

Acknowledgments
This work is supported financially by the Academy of
Finland (project 51528) and by the National Technology
Agency of Finland (project 40183/03).

References

[1] AspectJ WWW site. Available at http://eclipse.org/aspectj/.
[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and

M. Stal. Pattern-Oriented Software Architecture: A System
of Patterns. Wiley, 1996.

[3] S. Clarke. Extending standard uml with model composition
semantics.Science of Computer Programming, 44(1):71–
100, July 2002.

[4] Communications of the ACM. Special issue on Aspect-
Oriented Programming, 44:10, October 2001.

[5] Eclipse WWW site. Available at http://www.eclipse.org.
[6] A. H. Eden. LePUS: a visual formalism for object-oriented

architecture. InProceedings of IDPT’02, pages 22–28,
Pasadena, California, USA, June 2002.

[7] G. Florijn, M. Meijers, and P. van Winsen. Tool support
for object-oriented patterns. InProceedings of ECOOP ’97,
volume 1241 ofLNCS, pages 472–495, Jyväskyl̈a, Finland,
June 1997.

[8] M. Fowler. Analysis Patterns: Reusable Object Models.
Addison-Wesley, Reading MA, 1997.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[10] M. Hakala, J. Hautam̈aki, K. Koskimies, J. Paakki, A. Vil-
jamaa, and J. Viljamaa. Generating application develop-
ment environments for Java frameworks. InProceedings
of GCSE’01, pages 163–176, Erfurt, Germany, September
2001.

[11] I. Hammouda, O. Guldogan, K. Koskimies, and T. Systä.
Tool-supported customization of UML class diagrams for
learning complex system models. To appear in Proceedings
of IWPC 2004, June 2004. Bari, Italy.

[12] I. Hammouda and M. Harsu. Documenting maintenance
tasks using maintenance patterns. InProceedings of
CSMR’04, pages 37–47, Tampere, Finland, March 2004.

[13] I. Hammouda, M. Pussinen, M. Katara, and T. Mikko-
nen. UML-based approach for documenting and specializ-
ing frameworks using patterns and concern architectures. In
the 4th workshop of AOSD Modeling with UML, October
2003. San Francisco, California, USA.

[14] J. Hannemann and G. Kiczales. Design pattern implemen-
tation in Java and AspectJ. InProceedings of OOPSLA ’02,
pages 161–173, Seattle, Washington, USA, November 2002.

[15] W. M. Ho, F. Pennaneach, and N. Plouzeau. UMLAUT:
A framework for weaving UML-based aspect-oriented de-
signs. InProceedings of TOOLS 33, pages 324–334, Mont-
Saint-Michel, France, June 2000. IEEE Computer Society.

[16] JUnit WWW site. Available at http://www.junit.org.
[17] M. Katara and S. Katz. Architectural views of aspects.

In Proceedings of AOSD’03, pages 1–10, Boston, Mas-
sachusetts, USA, March 2003.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InProceedings of ECOOP’97, volume 1241 of
LNCS, pages 220–242. Springer Verlag, June 1997.

[19] K. Lieberherr, D. Lorenz, and M. Mezini. Programming
with aspectual components. Technical report, NU-CCS-99-
01, College of Computer Science, Northeastern University,
Boston, MA, March 1999.

[20] J. Peltonen and P. Selonen. An approach and a platform for
building UML processing tools. To appear in Proceedings
of WoDiSEE 2004, May 2004. Edinburgh, Scotland.

[21] Rational Rose WWW site. Available at
http://www.rational.com/products/rose/index.jsp.

[22] D. Riehle. Composite design patterns. InProceedings of
OOPSLA’97, pages 218–228, Atlanta, Georgia, USA, Octo-
ber 1997.

[23] The IEEE Standards Board. Recommended practice
for architectural description of software-intensive systems.
ANSI/IEEE-Std-1471, September 2000.

[24] Unified Modeling Language WWW site. Available at
http://www.uml.org/.

