A Tool Environment for Aspectual Patterns in UML

Imed Hammouda, Mika Katara, and Kai Koskimies
Institute of Software Systems
Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere, Finland
{imed.hammouda, mika.katara, kai.koskinji@xut.fi

Abstract raise the quality level of software systems by documenting
solutions that are known to yield certain desired quality at-
An aspectual pattern is a pattern that captures a generic tributes in many existing systems. Depending on the nature
aspect. It is argued that the realization of an aspect in of the problem, we may speak of analysis patterns [8], archi-
the form of a pattern is beneficial because various mecha-tectural patterns [2], design patterns [2], coding patterns [2]
nisms available in generic pattern-based environments be-etc. Essentially, a pattern describes a collection of software
come available for aspects as well. These benefits followentities (like, say, UML modeling elements) which collabo-
mostly from the fact that the structural information concern- rate in a certain way to solve a stated problem. A pattern is
ing an aspect is clearly defined and preserved (as a pattern)described independently of any particular system, in terms
separately from the actual system description. We demon-of generic roles which are replaced by actual software el-
strate the concept of an aspectual pattern and its applica- ements when the pattern is applied. If we detach the pure
tion in the case of the JUnit testing framework. A prototype structural character of a pattern from the purpose of the pat-
tool environment supporting aspectual patterns in UML has tern, a pattern can be simply understood as an arrangement
been developed. of interrelated roles of software elements, crosscutting any
other structuring of a system in which the pattern is applied.
Since an aspect can be viewed as a collection of software
1 Introduction elements relevant for a particular concern, from a structural
point of view the concepts of an aspect and a pattern come

Modeling has become an essential practice in softwareCl0Se 0 each other: both capture a crosscutting slice of a
development, allowing complex systems to be understoogSystem thatis IoglcaIIy.meanmgfuI for the understanding of
at a high level of abstraction. UML (Unified Modeling Lan- the System. The weaving of an aspect into a full system de-

guage [24]) has been widely adopted as de facto standardcription corresponds to the binding of the roles of a pattern

notation for expressing software models. However, soft- [the concrete elements of a system. Thus, the idea of uni-
ware systems are inherently multi-dimensional in the senselYing the concepts of an aspect and a pattern seems in many

that no single viewpoint or structuring can fully explain a Ways attractive. In particular, us.ing the tool technology de-
system, even at a high level of abstraction. In general, theveloped for patterns we can achieve a number of advantages

need for overlapping viewpoints in system descriptions has'n the context of aspects. These include:
been widely acknowledged (e.qg., [23]). Thus, we can under-

stand and manage software systems best in terms of model
slices, each covering a particular viewpoint only. This has
been the basic motivation for aspect-oriented development
[4], which strives for describing the system properties rele-
vant for a particular viewpoint separately, and merge these o Weaving is not a one-shot action but it can be done
descriptions by automated means into a comprehensive sys- partially if desired. This is useful if an aspect needs to

tem description. Since we are here interested in modeling, be introduced but all the participants of the aspect are
we assume static merging (weaving). not available yet.

On the other hand, patterns have emerged in software en-
gineering as a concept for expressing solutions to recurring e An individual aspect can be easily viewed or high-
problems. The general aim of the pattern movement is to lighted in a system. This is useful for generating views

e Aspects can be weaved interactively and incremen-
tally, under the guidance of the designer. This makes
the weaving process open to the designer, and allows
for customizable weaving.

that help to understand the system. the instances of the role in the pattern. For example, if an
operation role has cardinality 0..1, the operation is optional

e The information about an aspect appearing in a sys-; "o pattern, because the lower limit is 0.

tem is preserved and maintained. If the system is
later changed so that an aspect is affected, the tool 2 Aspects
keeps track of the properties required by the aspect andz' P

shows possible violations of these properties. i i)
In software engineering, separation of concerns refers

Briefly, an aspectual pattern is a pattern that representgo the ability to identify those parts of software artifacts
an aspect. We have built a prototype tool environment that are relevant to a particular concept, goal, task, or pur-
which supports aspectual patterns in UML modeling, us- pose. Concerns are the primary motivation for organizing
ing a generic pattern engine [10] as the core component ofand decomposing software into smaller, more manageable
the environment. In this paper, we demonstrate how such aand comprehensible parts. Aspect-oriented software devel-
tool environment can be exploited for aspects. opment (AOSD) [4], which is a direct implication of the

The remaining of the paper is organized as follows. In separation of concerns principle, has been proposed as a
Section 2 we briefly discuss the main characteristics of pat-solution to cope with the characteristics of software that
terns, aspects, and aspectual patterns. In Section 3 ware difficult to capture with other development approaches
present in more detail the UML-based pattern concept wesuch as object-oriented development. These characteristics
have used in this work. In Section 4 we apply aspectual are basically the different concerns cutting across several
patterns in developing the design model of the JUnit test- classes or other units of decomposition.
ing framework. In Section 5, we discuss our prototype tool Aspect-oriented programming (AOP) [18] is a program-
environment and show how it is used in applying aspectualming paradigm implementing the ideas of aspect orienta-
patterns. Related work is discussed in Section 6. Finally, intion. AOP organizes the crosscutting concerns into separate
Section 7 conclusions are drawn and possible future work ismodules called aspects. AspectJ [1] has been the most pop-

highlighted. ular language for AOP. Aspect] is a general-purpose aspect-
oriented extension to Java that provides support for modular
2 Basic Concepts implementation of a range of crosscutting concerns.

At the design level, there have been many proposals on

In this section, we review the main technologies used oW to model aspects in UML, for instance 3, 17]. Using
in this paper: patterns and aspects. We show how the twocurrent modeling languages, such as UML, it is often hard

concepts can be merged into so-called aspectual patterns. to identify the model elements that are relevant tp certgin
concerns only. Similar problems arise when superimposing

2.1 Patterns existing models with new model elements. In this regard,
it is argued that AOSD techniques can be useful for model

A pattern is an arrangement of software elements for d€velopment, in general. _
solving a particular problem. In the sequel we will give a _ Traditionally, AOP has been applied to weave new
simple structural characterization of a generic pattern con-functionality into programs statically by instrumenting the
cept. To be able to define a pattern independently of anySOUrce code. Recently, dynamic weaving during runtime
particular system, a pattern is defined in terms of element"@s become a more flexible option supported by several
roles rather than concrete elements; a pattern is instantiated®0!s- At the modeling level, however, static weaving re-
in a particular context by binding the roles to concrete el- Mains a useful approach since we usually do not want to get
ements. A role has a type, which determines the kind of into details of specific |mpIement§1t|on mechanisms, such as
software elements that can be bound to the role; the set ofn® moment of actual code weaving.
all the role types is called the domain of the pattern. Here
we assume that the domain of a pattern is UML; that is, the 2.3 Aspectual Patterns
roles are bound to UML model elements.

Each role may have a set of constraints. Constraints are An aspectual pattern is a pattern that captures an aspect.
structural conditions that must be satisfied by the model el-When implemented as patterns, aspects are represented us-
ement bound to a role. For example, a constraint of associaing a role structure that can be instantiated and weaved into
tion role P may require that the association bound to P mustbase models (applications). The weaving corresponds to the
appear between the classes bound to certain other roles ®inding of the roles: each role stores the information of a
and R. joint point. The constraints associated with a role determine

A cardinality is defined for each role. The cardinality of the context where the aspect may appear, and the constraints
a role gives the lower and upper limits for the number of can be used to check whether the aspect, implemented by

Role typ(:onstrainl Stereotype | Abstract | Visibility | Inheritance | Multiplicity | Aggregation | Return Type Parameter | Overriding | Type | Navigability | Participant
UML Package X

UML Class X X X X

UML Operation X X X X X X

UML Attribute X X X

UML Association X

UML Association End X X X X
UML Realization X X
UML Dependency X X

Figure 1. Pattern roles and constraints

the pattern, is correctly weaved. In contrast to traditional a stereotype value on a model element, can be attached
weaving, however, the weaving of aspectual patterns is conto almost any role; whereas the 'Multiplicity’ constraint,
sidered as an interactive, incremental process where the joirwhich specifies the value of a multiplicity, applies only to
points are located under the guidance of a tool, rather thanUML Association End’ roles since it does not make sense
in a fully automated fashion. Aspect overlapping can be in the case of other role types.

represented and implemented in a straightforward way us-

ing role-based pattern composition techniques: a model el-Example:

ement can play different roles in different aspectual pat-

terns. Another important benefit of bridging patterns and |n order to elevate the comprehensiveness of pattern
aspects for AOSD is the readily available tool technology structures, several visual specification techniques, like [6,

for pattern-oriented development. 22], have been suggested. Figure 2 shows our notation
for visual pattern specification. The figure depicts a role
3 Aspectual Patterns for UML diagram of the Command design pattern [9]. The nodes,

marked with white color, depict the pattern roles. The In-

In order to apply aspectual patterns at the design leve|vOKer role, for example, stands for any concrete element
for model development, we have defined pattern roles tothat may play the class role Invoker, the type of the role is
represent a subset of the UML metamodel. Therefore, thesPecified on top of the role name. The edges in the upper
domain of the patterns is UML. In this work, however, we Part of the figure denote the dependencies between the roles.
will restrict the application of aspectual patterns to UML There are two kinds of dependencies: 1) the dependency
class diagrams. For this, we have specified the roles showrfrom role execute to the role Command, which is marked
in Figure 1. Roles are used to represent different kinds With a diamond-ended line, represents the containment re-
of model elements in UML class diagrams. For example, lationship between the elements that may play these two
a 'UML Package’ role stands for model elements of type roles, 2) the dependency from role execute to role action,
UML package. which is marked with a light-arrow-ended line, stands for

In addition, Figure 1 shows the constraints that can be & logical relationship. In this case, any element that plays
associated with the roles and which constraints can bethe role execute should call the corresponding element that
applied on which roles. Constraints are used to enforcePlays the role action. The cardinality symbol ("1’ for exactly
certain properties in the constructed UML class diagrams.one, "?' for optional, ™ for zero or more, '+ for at least
For instance, the ’Inheritance’ constraint can be used to en-0ne) that comes along with the role name indicates the al-
force a generalization-specialization relationship between!owed number of concrete elements that may play that role.
two elements bound to UML class roles. A role can be Forinstance, there should be at least one element that plays
associated with various kinds of constraints. However, athe ConcreteCommand role. If not otherwise indicated, the
constraint makes sense only when applied to a proper rolecardinality of the role is 1.
kind. Attaching a constraint to a role is optional and should In order to show how the Command pattern can be used,
be used only if we want to enforce certain model properties. the bottom part of the figure gives a concrete example bind-
For example, the 'Stereotype’ constraint, which stands for ing (weaving). The concrete element Application, repre-

aspect can be weaved into the existing model by applying
the pattern it encapsulates. The undesired aspects are left
out simply by ignoring the patterns they represent. Aspec-
tual patterns may have overlapping roles. In this situation, a
pattern role may be bound to a concrete model element that
has previously been bound to another role. The overlapping
roles define how the individual aspects relate to each other.

As an example, let us consider the case of the JUnit [16]
design model. JUnit is a popular open-source framework
for implementing unit testing of Java programs. The design
of the framework reflects three different concerns: creat-
ing tests, defining a generic test interface, and the ability to
run multiple tests. Some of these concerns are defined in
terms of smaller goals. These goals have been discussed in
[16]. We refer to each of these concerns as a separate as-
pect. Therefore, in this work, the terms concern and aspect
are used interchangeably.

The first concern, named 'Creating tests’ is defined by

<< UML Class >> < UML Class >> << UML Class >>
Invoker

ConcreteCommand

‘<< UML Operation >>
execute

<< UML Class >>
Receiver

execute
'

...... S ——— three goals: representing a test case as an object, giving
' the tester a convenient place to put her fixture code and her
----- > Dependency <>—— Containment D patemrole test code, and reporting the test results. The first goal is
=P Prerequisite for <—> Binding (@D concrete element achieved by applying the Command design pattern which
encapsulates the test request as an object (test case) and uses
Figure 2. Role diagram of the Command pat- the method execute (called run) to execute tests. For achiev-
tern ing the second goal, the Template Method design pattern is

used. The pattern lets concrete tests redefine certain steps
of the testing algorithm. The third goal uses the Collecting
Parameter idiom to store the test results into an object that
is passed to the run method as a parameter.

The second concern, called 'Generic test interface’, con-
sists of two smaller goals: making all the test cases look
the same from the point of view of the invoker of the test;
and avoiding the creation of a subclass (of the test case)
for each testing method. For handling the first problem, the
class version of the Adapter design pattern is used. The pat-
tfern adapts the testing method to the command interface.
The second goal is realized through the Pluggable Selec-

sented by a dark-grey node, plays the role of Invoker, this
is marked by the double-arrowed line between Application
and Invoker. There are two elements that play the role Con-
creteCommand, this is a direct implication of the '+’ cardi-

nality symbol associated with this role. As a next weaving

step, the user might want to provide a third ConcreteCom-
mand element, named NewFileCommand, for creating new
files. In case several concrete elements play the same pa
tern role, the order of the binding is indicated by an inte-

ger index. Moreover, the dark-headed arrows in this part of tor idiom. This solution uses Java reflection API to invoke

the figure denote the order how the bindings should be per- . . - ;
formed. For instance, the binding between the concrete el_then:gstlng method from a string representing the method's

ement Application and the role Invoker is a prerequisite for . , . o
The last concern, which we call 'Supporting test suites’,

the binding of the concrete element Command to itsrole. . . .) :
is implemented using the Composite design pattern. The
pattern treats single or multiple test cases uniformly. The

4 Applying Aspectual Patterns run method is therefore used to execute either single test
cases or collections of them.
4.1 Developing JUnit Design Model Based on the discussion above, the design model of the

JUnit can be described in terms of three aspects. Each of

Aspectual patterns can be used to superimpose modelsthese aspects can be separately implemented as an aspectual
Assuming that each pattern represents a specific model partpattern. In this way, every aspectual pattern corresponds to
is is possible to apply the patterns one after another to forma separate feature in the design model of the framework.
a larger model out of the parts. Usually, the final model Generally, one feature may be composed of a set of smaller
is formed by accumulating the desired parts only. Becausesub-features. However, we want to consider the larger fea-
every pattern encapsulates a well-defined aspect, a desiretlres since often a sub-feature alone does not make much

sense. In the case of JUnit, the Collecting Parameter soluFinally, by applying the 'Supporting test suites’ aspectual
tion is better understood in the context of the bigger con- pattern, support for test suites is added. Each time a pattern
cern. is applied, new model elements are weaved into the existing
In the case of JUnit, the aspectual patterns that we havedesign.

identified consisted of design patterns and idioms. Intypical Using aspectual patterns, it is possible to generate spe-
situations, however, aspectual patterns consist of any othetialized views of a model. By constructing a specialized
kind of solutions. In other words, an aspectual pattern canview of a model, we mean slicing the model into parts that
consist of any arrangement of roles that is used to representorrespond to the patterns applied. A model can be sliced
a given aspect in a system. in various ways. ldeally, each slice represents one or more
aspects in the original design model. Therefore, a slice of
a model can be regarded as a combination of the set of fea-
Supporting test suites tures defining that model. An aspect in the original model

° may or may not be included in the slice. In the case of JU-

;s
;'/ : Test Composite: Component |‘\‘ nit, itis possible to highlight certain slices in the design that
' g run(TestResult) [correspond to specific features. This helps in understanding
~~~~~~~~~~ Lol8 é : the model.

@ > ‘°°"‘P°S"e As we have seen earlier, design models evolve as new
estCase TestSuite aspects are added and other are dropped out. In the case of
[ Template Method nnesties) | |stenton. [ adaptive maintenance, models can be extended to adapt to

rosomt ™ — sellpg) " ~~~~~~~~~~~~~~~~~~~ new platforms or support new feat_ur_es. In many cases, SL_Jch

Ii ; fName @l maintenance activities can be anticipated during the design
\[eleaingRaremeten] — # phase. In such situations, aspectual patterns can be used to
Creating tests L d encapsulate th_e maintenance interface_. chh pattern models
S o Adapter (Class) a separate maintenance aspect. Considering the JUnit case,

. Generic fest aspectual patterns may be used to describe how the design
\._Generic test interface .- .

- model of the framework can be extended. More specifi-
cally, there are pattern roles bound to the base model ele-
ments presented in Figure 3. These roles are used to define
join points for other roles used to annotate the extension.
The architects of the JUnit framework, for example, may
document the extension points and the maintenance tasks

Figure 3. Aspectual patterns in JUnit

Figure 3 shows the overall architecture of the JUnit
framework. According to the original documentation [16], ) . :
the design is achieved by applying four design patterns andrequwed for supporting other types of testing as well.
two idioms. From an AOP perspective, some of these so-
lutions can be regrouped under the same concern. The twdt.2 Other Usage Scenarios
design patterns Command and Template Method, and the
idiom Collecting Parameter, for instance, form a larger con-  In this work, we have shown how aspectual patterns can
cern called 'Creating tests’. The overall JUnit design is be used to develop the design model of the JUnit testing
achieved by starting a design from scratch. Aspectual pat-framework. However, the approach tends to be more bene-
terns are then applied one after another, until the final archi-ficial when applied to more complex case studies.
tecture of the system is formed. Slicing a model can be used to solve various kinds of
problems. When modeling complex systems, design mod-
els can be too complex and may become difficult to un-

Adapter | | Pluggable ,..‘ /
Selector FRY

derstand. Model slicing can be used in this case to group

e _ Creatingtest N related features into smaller submodels. In [11], we have
I T e shown how specialized views of models may enhance sys-

tem comprehensibility.
Figure 4. Steps in JUnit model design Aspectual patterns can be applied to encapsulate the

maintenance interface of design models. Each pattern is
Figure 4 shows a typical order of applying JUnit as- used to represent a separate maintenance aspect. In this re-
pectual patterns. Firstly, the 'Creating tests’ pattern is ap- gard, pattern roles are utilized to document the model exten-
plied in order to create and structure the framework Test- sion points and the way models can evolve. In [12], we have
Case class. Pattern 'Generic test interface’ is then appliedshown how patterns can be used to document maintenance
to provide a generic interface for using the TestCase classtasks. In this work, we show how the idea of patterns can



be applied early in the design phase in order to documenttool, free model editing actions which result in constraint
model maintenance tasks. violations are responded to by new corrective tasks, too.

Preserving the bindings between pattern roles and con- In principle, any role-based pattern concept and its tool
crete elements represents an important advantage. This fessupport could be used as a platform for aspectual patterns:
ture can be used to review which model elements have beera pattern concept is so generic that it can cover almost any
weaved to the base model. In the case of model mainte-kind of logical slice of a model, assuming that the role
nance, for example, it is possible to control the way models types and constraints are defined in an appropriate way. In
have been updated. This can be used as a basis for supporthis respect our pattern platform does not essentially dif-
ing undo operations of maintenance actions. fer from other pattern tools (like [7]). However, the task-
driven interactive support for binding the roles, provided by
our environment, brings the additional benefits for aspectual
patterns, mentioned in the introduction. In particular, the
weaving (i.e., binding) process becomes open: the designer
5.1 Tool Platform performs simple tasks in a context she understands, rather
than a large black-box operation. In addition, the weaving
process can be easily customized: the designer can choose
between different alternative tasks, leading to different de-
sign solutions.

5 Implementation

MADE [13] is an experimental platform for pattern-
driven UML modeling. The platform is the result of the
integration of a number of different tools. JavaFrames
[10] and Rational Rose [21] represent the key components
of the integration. JavaFrames is a pattern-oriented task-2.2 Applying Aspectual Patterns in MADE
based development tool built on top of the Eclipse [5] plat-
form. Rational Rose is mainly used for designing and  MADE can be used to specify the various properties of
processing UML models. The communication between aspectual patterns discussed earlier. Figure 5 shows a tex-
JavaFrames and Rational Rose is achieved through a UMLtual representation of the 'Creating Tests’ aspectual patterns
model processing platform, xUMLi [20], providing a tool-  discussed earlier. The pattern defines two UML class roles.
independent AP for accessing the UML models. The Command UML class role is an element of the Com-

The MADE environment realizes aspectual patterns in mand design pattern and stands for the class which declares
the UML domain, as explained in Section 3. MADE sup- an interface for executing a request. The CollectingParam-
ports the specification of patterns, and the interactive bind-eter role is part of the Collecting Parameter idiom. The
ing of the roles of a pattern to UML model elements re- purpose of the role is specified by the description property.
siding in Rose. A key functionality of the environment is The Command role has a UML operation role called exe-
provided by JavaFrames which transforms a (possibly par-cute. The execute role is associated with a parameter con-
tially bound) pattern specification into a task list: every un- straint that refers to the concrete name of the instance play-
bound role which can be bound in the present situation, tak-ing the CollectingParameter role. The primitiveOperation
ing into account the dependencies between the roles, berole, contained in the Command role, is a UML operation
comes a task. Such a task can be performed in two waygole that belongs to the Template Method design pattern.
by the designer: either she points out an existing model ele-There can be multiple concrete elements playing this role.
ment to be bound to the role, or she asks the tool to generateThis is indicated by the '+’ cardinality. The role is associ-
one before binding it to the role. For the latter purpose, a ated with an "abstract’ constraint stating that every concrete
role specification can be associated with a default elementelement playing this role must be abstract.
description, used in the generation. Typically, the default  Figure 6 shows an overall view of MADE environment
element descriptions refer to the elements bound to otherwhen applying aspectual patterns to develop the design
roles in the pattern. For example, a class role in an aspecmodel of JUnit. The top most part is the Rose tool. The bot-
tual pattern can have a default element description consisttom part is the JavaFrames tool. JavaFrames itself is com-
ing of the name specification of the class element generatethosed of multiple integrated views. Aspectual Patterns are
by default. shown in the bottom left view. The 'Creating tests’ pattern

When atask is executed, other tasks become doable. Thés fully bound whereas 'Generic test interface’ is unbound
tool maintains the task list, and checks that the role con-and 'Supporting test suites’ is half bound. In fact, the bot-
straints are satisfied by the elements bound to the roles. Intom right view displays a task defined by the latter pattern.
the case of constraint violations, new corrective tasks areThe task is to provide a UML operation that adds a child to
shown in the task list. In many cases the tool can provide anthe composite component. Bindings are shown in the bot-
option to correct the model automatically. Since the UML tom middle part of the figure. This view reflects the tasks
modeling tool, Rose, is tightly integrated with the pattern that have been already carried out.



Aspectual Pattern: Creating Tests o i Bl Vi L NEHE

N o=z ? ) ]
Roles Propertles DEHE B & RO B BB X
R A =
Command : UML Class (1) defaultClassName: AbstractCommand ; {,
i ter : TestRe sul]
description: Declares the interface how to — pogemer, et TestCase
execute the operation. [Name : String 7
P i é children P— TestResult
G d execute: UML Operation (1) description: The execute method. Il ’:;;Ei;’ﬂ ==
omman [ TestSute | tesrComng
parameter: Constraint value: <#:/CollectingParameter.i.shortName>
ninparameter ; TestResult) UML Editor
commandName : UML Attribute (1) iption: Name of the ¢ 4l I '@
) , o A [ s
type: Constraint value: String. e T — e
primitiveOperation : UML Operation (+)|description: A primitive method to be F k2 g L [Dix
Template overriden by subclasses. |
Method | ]
abstract: Constraint value: true ~ x
(extnds Supportng_Test_sukes) | = ] Camposie
‘ CollectingParameter : UML Class (1 description: An object passed to methods in 2 A L
Collecting 9 . !
Parameter order to collect information from those bl v =8 b
methods. ep_ (extends Creating Tests) =B Testsure Tasks
@ Step_2 (ex Interface) & nn
@, Step_3 (ex i
Provide a UML ttion for the rols
Patterns Bindings e el

Test components &

Figure 5. Textual representation of the 'Creat-
ing Tests’ pattern

Tasks [Properties

Figure 6. Composing models in MADE: the
It is possible to highlight different features in the design JUnit case
by selecting the corresponding aspectual pattern. In Figure
6, the feature for creating tests is highlighted. The model el-

ements corresponding to this feature, at the class level, ar%es. n patterns by Hannemann et al. [14] shows modularit
marked with a darker color. This can enhance the under-2¢>'9" P Y ' y

standability of the model since it decomposes it into multi- Itrr?ptr&ve?m;:?etfnls?v&;hocfrct)giczfttiﬁOr':a?uartéebrgtsv-veléfr;gsuzg q
ple views. The different relationships between features are a P 9

also exposed. In the example, the relationship is expresse he concrete elements they are bound to see the most im-

by the fact that the TestCase UML class inherits from the provement. Rather than implementing patterns as aspects,

Test class, which belongs to another feature. It should be" this work we implement aspects using the role-based pat-

noted, however, that the TestCase class represents an ove“(-ern cc.)nc.:ept atthe design level. . o
A similar approach to aspect-oriented modeling is pre-

lapping model element since it treats two different features. ) X ;
On the one hand, it plays the role of Command in 'Creating sented in [3]; the author presents a subject-oriented model

Test pattern. On the other hand, it stands for the leaf com-d€sign. Composition patterns, which are used to model
ponent in the Composite design pattern which immementscrosscuttmg behavior, can be applied to supplement the be-
the *Supporting test suites’ aspectual pattern. havior of base model operations with pattern behavior de-

fined in the composition pattern. Compared to composition
. . patterns, aspectual patterns augments the base model with
6 Discussion and Related Work new structural elements. However, we believe that MADE
could provide tool support for the ideas of [3] provided that
The term aspectual patterns used in this paper is inspiredaspectual patterns cover behavioral information.
by the work on aspectual components [19]. The constructs A tool for building and manipulating UML models with
in both approaches are represented in terms of a graph ofspects, know as UMLAUT, is presented in [15]. The tool
nodes. In the case of [19], a graph node, called a partici-can be used to weave model elements into existing design.
pant, is a class in the participant graph that should be boundEvery weaving step is a transformation step applied to a
to classes in other participant graphs or to a concrete clastJML model. The weaving process is done by applying a
graph. In our methodology, the graph nodes represent theset of transformation rules expressed in terms of combina-
pattern roles. Roles may overlap with other roles and needtions of predefined operators. Once applied, the effect of
to be bound to concrete elements. The key difference be-the transformation rules cannot be recalled after the trans-
tween the two approaches is that aspectual components opformation is done. In our methodology, the transformation
erate at the programming level whereas aspectual patternsiules are expressed in terms of pattern roles and constraints.
in this work, are used for processing static design models. The effect of the transformations rules is permanent and can
The relationship between patterns and aspects have beehe recalled after the transformation is applied. This is done
identified in earlier works. An AspectJ implementation of through the persistent binding between the pattern role and



the concrete model element it is bound to. 7

Furthermore, in [17] an aspect-oriented view on soft-
ware architecture has been defined. The work resembles
the current work in the way which aspects are superimposed
on top of each other, or alternatively on top of an existing
base design, in a certain order. However, patterns enable
capturing reusable designs at a higher level of abstraction
than UML packages and can be customized for different do-
mains. Similar architectural views can although be used for [10]
visualizing pattern orderings and the concerns they capture
collectively, as was done in [13].

(8]

7 Conclusions 11

In this paper, we have presented our approach to aspect-
oriented model development. The approach is based on
capturing development steps in so called aspectual patternélz]
which combine a generalized pattern concept with aspect
orientation. (13

Aspectual patterns are aspect-oriented not only in the
sense that they cut across several classes or components,
but also in the way they are designed. More specifically,
we aim at modularizing development steps in a way that the
design decisions treating a particular concern are grouped(14]
into one aspectual pattern. This aspectual pattern can then
be applied to the system under development which can be[15]
completely oblivious of those design decisions.

As discussed in Section 5, our approach is supported by
tools that are currently under development. Other possible
future work directions include integrating our ideas with [16]
existing work on stepwise development and maintenance[17]
support.
Acknowledgments [18]
This work is supported financially by the Academy of
Finland (project 51528) and by the National Technology
Agency of Finland (project 40183/03). [19]

References

20
[1] AspectI WWW site. Available at http://eclipse.org/aspectj/. (201
[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and
M. Stal. Pattern-Oriented Software Architecture: A System [21]
of Patterns Wiley, 1996.
[3] S. Clarke. Extending standard uml with model composition [22]
semantics. Science of Computer Programming(1):71—
100, July 2002.
[4] Communications of the ACM. Special issue on Aspect- [23]
Oriented Programming, 44:10, October 2001.
[5] Eclipse WWW site. Available at http://www.eclipse.org.
[6] A. H. Eden. LePUS: a visual formalism for object-oriented  [24]
architecture. InProceedings of IDPT'02 pages 22-28,
Pasadena, California, USA, June 2002.

G. Florijn, M. Meijers, and P. van Winsen. Tool support
for object-oriented patterns. Proceedings of ECOOP '97
volume 1241 olLNCS pages 472-495, Jiagkyh, Finland,
June 1997.

M. Fowler. Analysis Patterns: Reusable Object Models
Addison-Wesley, Reading MA, 1997.

9] E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign

Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, 1995.

M. Hakala, J. Hauta@ki, K. Koskimies, J. Paakki, A. Vil-
jamaa, and J. Viljamaa. Generating application develop-
ment environments for Java frameworks. Pmoceedings

of GCSE'01 pages 163-176, Erfurt, Germany, September
2001.

I. Hammouda, O. Guldogan, K. Koskimies, and T. @yst
Tool-supported customization of UML class diagrams for
learning complex system models. To appear in Proceedings
of IWPC 2004, June 2004. Bari, Italy.

I. Hammouda and M. Harsu. Documenting maintenance
tasks using maintenance patterns. Pnoceedings of
CSMR’04 pages 37-47, Tampere, Finland, March 2004.

] I. Hammouda, M. Pussinen, M. Katara, and T. Mikko-

nen. UML-based approach for documenting and specializ-
ing frameworks using patterns and concern architectures. In
the 4th workshop of AOSD Modeling with UML, October
2003. San Francisco, California, USA.

J. Hannemann and G. Kiczales. Design pattern implemen-
tation in Java and AspectJ. Rroceedings of OOPSLA '02
pages 161-173, Seattle, Washington, USA, November 2002.
W. M. Ho, F. Pennaneach, and N. Plouzeau. UMLAUT:
A framework for weaving UML-based aspect-oriented de-
signs. InProceedings of TOOLS 3pages 324-334, Mont-
Saint-Michel, France, June 2000. IEEE Computer Society.
JUnit WWW site. Available at http://www.junit.org.

M. Katara and S. Katz. Architectural views of aspects.
In Proceedings of AOSD’Q3pages 1-10, Boston, Mas-
sachusetts, USA, March 2003.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InProceedings of ECOOP’'9%olume 1241 of
LNCS pages 220-242. Springer Verlag, June 1997.

K. Lieberherr, D. Lorenz, and M. Mezini. Programming
with aspectual components. Technical report, NU-CCS-99-
01, College of Computer Science, Northeastern University,
Boston, MA, March 1999.

J. Peltonen and P. Selonen. An approach and a platform for
building UML processing tools. To appear in Proceedings
of WoDIiSEE 2004, May 2004. Edinburgh, Scotland.
Rational Rose WWW site. Available at
http://www.rational.com/products/rose/index.jsp.

D. Riehle. Composite design patterns. Rroceedings of
OOPSLA'97 pages 218-228, Atlanta, Georgia, USA, Octo-
ber 1997.

The IEEE Standards Board. @ Recommended practice
for architectural description of software-intensive systems.
ANSI/IEEE-Std-1471, September 2000.

Unified Modeling Language WWW site.  Available at
http://www.uml.org/.



