
Creating Framework Specialization Instructions for
Tool Environments

Antti Viljamaa and Jukka Viljamaa

Department of Computer Science, University of Helsinki
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, Finland

E-mail: {antti, jukka}.viljamaa@cs.helsinki.fi

Object-oriented application frameworks provide an established way of reusing
the design and implementation of applications in a specific domain. Using a
framework for creating applications is not a trivial task, however, and special
tools are needed for supporting the process. Tool support, in turn, requires ex-
plicit annotations of the reuse interfaces of frameworks. Unfortunately these
annotations typically become quite extensive and complex for non-trivial frame-
works. In this paper we focus on describing techniques for minimizing the work
needed for creating framework annotations. We discuss the possibility of
generating annotations based on frameworks’ and example applications’ source
code, automating annotation creation with dedicated wizards, and introducing
coding conventions and advanced language features, such as inheritance, for
framework annotations languages. We also introduce a programming environ-
ment that supports framework annotation and specialization. In our environment
we have incorporated many of the techniques described in this paper.

1. Introduction
For a long time reuse has been acknowledged as a major factor in enhancing software
production [1, 2]. At the moment object-oriented application frameworks [3, 4, 5] rep-
resent the state of the art in reuse and they are quickly becoming the most established
reuse technique. A framework defines the main concepts of its application domain as
abstract interfaces. It nails down the overall architecture of the applications derived
from it by defining the relationships between the main concepts and the default func-
tionality and algorithms associated with them.

A framework provides a reuse interface that enables an application developer to spe-
cialize the framework and call its services. The application developer specializes the
framework by defining subclasses for the abstract framework classes (white-box reuse)
or by combining and customizing the ready-made components provided by the frame-
work (black-box reuse). The hot spots of the framework are an important part of the re-
use interface, especially for white-box reuse [6]. They are the variation points where the
application developer can plug in her application-specific code that can be called from
within the framework, e.g., by using dynamic binding. In practice, this usually involves
overriding the abstract hook methods defined in the framework with the concrete hook
methods defined in the application.

In addition to reuse, proper tool support is also important in software development. A
modern integrated development environment (IDE) provides a set of seamlessly incor-
porated tools for editing, compiling, and debugging. Advanced environments even sup-
port refactoring and various kinds of source code structure visualizations.

The support for utilizing frameworks in IDEs is still mostly limited to black-box reuse.
There are graphical tools for composing a user interface from a set of customizable
components, and there are also general-purpose composition tools for standard compo-
nent architectures such as JavaBeans (see http://java.sun.com/products/javabeans/).
These kinds of tools have already proven useful and they are becoming a standard part

of IDEs. The essence of these tools is that they provide an easy-to-use interface to a li-
brary of ready-made components.

Tool support for white-box reuse is just taking its first steps, however, even though
most frameworks offer white-box reuse because it allows for more flexibility than mere
black-box reuse. Obviously, defining subclasses and overriding methods is far more
demanding than just instantiating and providing parameters for default components. It
usually requires a thorough understanding of the framework’s concepts and the
dependencies between them. That is why we argue that there is a need for tools sup-
porting the white-box reuse of frameworks.

Framework specialization is a process that is controlled on one hand by the restrictions
posed by the framework’s architecture and on the other hand by the application
developer’s demands. From the framework user’s point of view there should be support
for specializing frameworks by adding features to the produced application in a step-by-
step manner. In our vision, a framework should be accompanied with a set of tools that
guide the user through the specialization process and provide automatic code genera-
tion, dynamic and context-sensitive user documentation, as well as continuous valida-
tion of application-specific code against the requirements posed by the framework’s ar-
chitecture.

In this paper we discuss ways to use an annotation language for describing the frame-
work’s reuse interface in order to implement the framework specialization support
functionality in a generic way for an arbitrary framework. First, in section 2 we intro-
duce our model for specifying role-based annotations for supporting framework spe-
cialization. The rest of the paper is devoted to techniques that are needed to handle large
and complex framework annotations. Section 3 gives general guidelines for writing ef-
fective annotations. In section 4 we discuss advanced annotation language features and
tools that make framework annotation easier. Section 5 sketches a method for extracting
parts of annotations automatically from source code. Our prototype framework engi-
neering environment, in which we have implemented many of the techniques introduced
in this paper, is briefly described in section 6. Section 7 concludes the paper with a dis-
cussion on the importance of the framework specialization assistance tools and require-
ments for them.

2. Role-Based Framework Specialization Instructions
The tools in a traditional IDE work with plain source code. Plain source code is not
enough to support framework specialization, however. This is because framework reuse
interfaces typically involve complex requirements and restrictions among multiple pro-
gram elements (e.g. classes, methods, or data fields). Such relationships are difficult or
even impossible to express using the current implementation languages1. Thus, we have
two choices: we can either design a new language, or we can construct a tool that takes
care of enforcing those restrictions that are not directly supported by the constructs of
the framework’s implementation language.

Even though a new language might be considered a more elegant solution to this prob-
lem, there are also quite a few advantages to the tool based solution that utilizes a sepa-
rate annotation. First of all, when the annotation language is separate from the actual
implementation language, it is possible to use an existing (popular) implementation lan-

1 There are mechanisms that enable the prevention of some simple framework misuses. In Java, for example, it is

possible to declare classes final, which can be used to some extent to distinguish the framework’s frozen spots
from the hot spots.

guage. It is also relatively easy to adjust the method to fit multiple programming lan-
guages. Furthermore, the tool itself can be integrated into an existing IDE so as to get
full advantage of an established environment and the standard tools it provides.

Using a separate annotation makes it possible to annotate existing frameworks without
modifying their implementations. It is also feasible to make multiple annotations for
different audiences. For example, novice users might have a simplified and restricted
view to a framework, whereas an annotation for experts might reveal more details and
advanced features. Also, from a conceptual point of view, separate framework annota-
tions provide a more abstract and high-level view over the framework source code than
possible language extensions do.

R o l e s a n d C o n s t r a i n t s
We argue that framework specialization instructions can most conveniently and intui-
tively be described in terms of role-based annotations. Similar views on the suitability
of role-based models to describe reusable software systems can be found, for example,
in Riehle’s work on role modeling [7] and Gamma et al.’s work on design patterns [8].
Also van Gurp et al. emphasize the role-oriented nature of framework interfaces [9]. In
the following we use our own syntax and semantics for a role-based framework annota-
tion. However, we argue that similar basic principles are found in almost all role-based
languages.

In our model, the annotations of framework reuse interfaces are specified using spe-
cialization patterns. A specialization pattern is a specification of a program structure,
which can be instantiated in several contexts to get different concrete variants of the
structure. A specialization pattern is given in terms of roles to be played by structural
elements of a program. We call the commitment of a program element to play a par-
ticular role a contract. A role may stand for a single element or a set of elements. Thus,
a role can have multiple contracts, and a program element can play many roles through
a number of contracts. Cardinality of a role bounds the number of its contracts.

A role is always played by a particular kind of a program element. Consequently, we
can speak of class roles, method roles, field roles and so on. For each kind of a role,
there is a set of properties that can be associated with the role. For instance, for a class
role there is an inheritance property specifying the required inheritance relationship of
each class associated with that role. Properties like this, specifying requirements for the
static structure of the concrete program elements playing the role, are called constraints.

Unlike constraints, some properties are only meant to affect code generation or dynamic
user guidance. For instance, most role kinds support a default name property for speci-
fying the name of the program element used when, e.g., a tool generates a default im-
plementation for the element. Those properties are called templates. They are used when
textual information needs to be generated, but they are not checked afterwards.

A specialization pattern can be expressed as a pattern diagram. Figure 2.1 shows an
example of a simplified role-based annotation for a small organization framework. The
framework contains three classes2 describing the workers and tools of an organization
(the classes in the fw package). Each worker has a salary. A worker can be a tool expert,
in which case she holds an association to a tool she masters. The salary of a tool expert
depends on her basic salary (the value of the salary field) as well as on the complexity
factor of the tool she knows. Applications are derived from the framework by defining

2 The names of the abstract classes and methods are written in italics.

appropriate subclasses (the classes in the mycompany package in this example) for the
framework classes.

Tool

getComplexityFactor():
 float

Worker

_salary: float

getSalary(): float

ToolExpert

getSalary(): float
getTool(): Tool

fw

mycompany

FREDExpert

getTool(): Tool
EclipseExpert

getTool(): Tool

FREDToolSet

getCo plexityFactor(): m
 float

Eclipse

getCo plexityFactor(): m
 float

ToolExpertWorker1..1
inherit: Worker

getSalary1..1
override: Worker.getSalary

Worker1..1

getSalary1..1

Tool1..1

getComplexity1..1

ToolExpert1..1

getTool1..1

DerivedWorker0..n
inherit: Worker

getSalary0..1
override: Worker.getSalary

DerivedToolExpert1..1
inherit: ToolExpert

getTool1..1
override: ToolExpert.getTool

DerivedTool0..n
inherit: Tool

getComplexity1..1
override: Tool.getComplexity

Implementation (class diagram) Annotation (pattern diagram)

Figure 2.1: An example of a simplified role-based annotation for a framework

The example annotation consists of only one specialization pattern3 that models the in-
heritance relationships between the framework classes and the application classes as
well as overriding of some important hook methods (e.g. Tool.getComplexityFactor and
ToolExpert.getTool). The rectangles in the pattern diagram represent roles. The class
roles (e.g. Worker, Tool, and DerivedWorker) are denoted with thick borders and the
method roles (getSalary, getComplexity, and getTool) with thin borders. The relative
placement of roles within other roles reflects the declaration hierarchy of roles. Figure
2.1 shows, for instance, that a getTool role is declared within the DerivedToolExpert
role, which means that also the methods playing that getTool role (e.g. FRED-
Expert.getTool) must be declared within a class that plays the DerivedToolExpert role.

Figure 2.1 differentiates the roles from their instances (i.e. the programming language
elements playing the roles)4. The dashed arrows in the figure show the program ele-
ments that play each role. For example, the ToolExpert class plays two roles: Tool-

3 In practice, there would be multiples specialization patterns in an annotation for any non-trivial framework, e.g.,

one for each hot spot.
4 Note that in [8], for example, both pattern roles and their instances are described with similar class diagrams. This

may cause confusion if the roles and their instances are depicted in the same diagram.

ExpertWorker and ToolExpert. The former role describes ToolExpert as a subclass of
the Worker class and the latter role describes ToolExpert as a super class for the applica-
tion classes playing the DerivedToolExpert role.

The names of the roles for the application classes and methods in figure 2.1 are written
in bold to distinguish them from the framework roles that stand for the program ele-
ments defined in the framework. The application roles, on the other hand, describe the
program elements, which the application developer must supply. The requirements for
those program elements are specified with constraints associated with the corresponding
roles.

The cardinality of a role is given as superscript after the name of the role. The cardi-
nality can be either exactly one (1..1), from zero to one (0..1), from one to infinity
(1..n), or from zero to infinity (0..n) with respect to the other roles the role depends on.
The dependencies are denoted with arrows between roles (e.g. from DerivedToolExpert
to ToolExpert and to DerivedTool)5.

The main properties of a role can be optionally listed below the role name. In figure 2.1,
there are inheritance constraints declared for the subclass roles (ToolExpertWorker,
DerivedWorker, DerivedTool, and DerivedToolExpert) stating that the program ele-
ments playing the subclass roles must inherit the class playing the corresponding base
class role. There are also overriding constraints in the method roles declared within
subclass roles describing the overriding of the hook methods of the framework.

Note that most properties of the roles have been left out from the figure to keep it read-
able. For example, an important aspect of this framework is that each concrete tool ex-
pert (e.g. EclipseExpert) returns a reference to an appropriate concrete tool (e.g.
Eclipse) as a result of its getTool method (see figure 6.1). The dependency arrow from
DerivedToolExpert to DerivedTool is a hint of that. Field roles and code snippet roles6
would be needed to fully describe that relationship.

U s i n g F r a m e wo r k A n n o t a t i o n s i n T o o l s
A framework annotation language like the one introduced above can be used for various
purposes. First of all, the whole framework specialization process can be seen as a se-
quence of steps in which the roles of the framework annotation are bound to imple-
mentation entities. The dependencies between the roles form a natural ordering for these
binding steps; a role can be bound only if there already are program elements playing
the roles the particular role depends on. We say that there is a potential binding for a
role, if that role could be bound to a program element at a given moment. Furthermore,
based on each potential role binding, we can generate a note that suggests the frame-
work specializer to make the binding. This mechanism forms a basis to the implemen-
tation of a dynamic version of framework cookbooks [10] that have traditionally been
used for framework documentation.

Typically the application roles depend on the framework roles, so the framework roles
are bound first7. In our annotation example, there would first be potential bindings for
the roles Tool, Worker, and ToolExpert. After binding the role Worker, there would be a
potential binding for the remaining framework role ToolExpertWorker, too. For the

5 Actually, there should be dependencies between method roles, too (e.g. from the roles describing the overriding

methods to the roles of the methods to be overridden), but we have left them out from the figure for simplicity.
6 Code snippets can be used to describe method bodies and field initialization clauses.
7 This binding can be done by the framework developer, for instance. We call this process framework initialization.

application developer there will be potential bindings for DerivedWorker and Derived-
Tool. Potential bindings for DerivedToolExpert will be available once the application
developer has first defined some concrete tool classes.

The making of role bindings could be automated to some extent. A framework speciali-
zation tool could actively look for program elements that conform to the constraints
specified in roles. If such elements were found contracts for binding them to the appro-
priate roles could be made automatically. In practice, automatic role bindings must
probably be limited to some subset of potential bindings. For example, let us assume
that there is a class role for certain classes and a method role for the methods inside
these classes. Once the class role is bound, the tool could automatically try to bind the
method role to some methods inside the implementation class.

Framework roles typically have one-to-one relationship with the framework implemen-
tation entities, and it is known beforehand which roles should be bound to which pro-
gram elements. Thus, automatic role binding would be especially useful when binding
the framework roles during framework initialization.

Besides the order in which the role bindings are made, our annotation language also
supports the validation of the program element playing a role. The validation is made
against the constraints specified in the role. For example, we can check that an appli-
cation class playing the role DerivedToolExpert actually inherits the framework class
ToolExpert.

We mentioned earlier the possibility to generate notes for the framework specializer
about the potential bindings that can be made. The possibility to add templates into the
roles enhances this functionality. Templates are evaluated to text whenever necessary.
Besides freeform text, templates may include references to other roles and to the pro-
gram elements playing those roles. For example, in the DerivedToolExpert role we
could have a template whose contents would be “Provide ‘</DerivedTool>Expert’ by
inheriting ‘</ToolExpert>’”. This template could be used to generate a note for the
framework specializer whenever there exists a potential binding for the role Derived-
ToolExpert (i.e. after she has first identified the appropriate concrete tool).

The same template mechanism can also be utilized for generating code based on a role.
The easiest approach is to support simple template-based code generation where the re-
sulting code is not checked afterwards for constraint violations. This one-way code
generation obviously has significant drawbacks; we cannot verify the validity of source
code after the user modifies it nor can we say anything about the validity of any non-
generated source code that is bound to some role.

We suggest the separation of code generation and constraint checking. Code generation
can be conveniently implemented with a template-based mechanism, but we should also
be able to separately verify the properties of program elements whether they were gen-
erated or not. Code generation templates must of course conform to the constraints as
well, but in addition they typically include lots of example-like default values that can
be altered by the user.

The constraints can be implemented as dynamically checked run-time invariants or as
static source code validations. In the former approach it is possible to create more de-
tailed constraints based on, for example, the dynamic types of variables. The drawback
with the latter approach is that the constraints may only utilize static source code infor-
mation. However, the feedback about possible constraint violations can be given to the
framework specializer sooner than with dynamic constraints.

Static constraint checking can be implemented in a compiler-like manner, where the
implementation source code is analyzed and all the constraints are validated once the
user asks the tool to do so. Constraint checking can also be implemented in a more in-
teractive way by parsing the source code incrementally as the user edits it and by
(re)evaluating the constraints of a role every time the program elements bound to that
role are changed.

T h e P r o b l e m o f C r e a t i n g F r a m e wo r k A n n o t a t i o n s
In this section we have briefly introduced a role-based method for annotating the reuse
interfaces of application frameworks. The description given here is only meant to pro-
vide the reader with some background knowledge and motivation for the following dis-
cussions. For a complete definition of our annotation language and its relation to other
similar methods as well as for detailed large-scale examples of its usage refer to [11]
and [12].

However, as can be seen even in the simplified annotation example above, framework
annotations typically become quite extensive and complex. Based on our experiences
the ratio of a framework annotation size to the framework size typically ranges from
15 % to 50 %. The ratio naturally depends on the level of annotation detail. In the worst
case the annotation size can even exceed the size of the framework.

Our main focus in this paper is to represent techniques that can be used to support the
creation of framework annotations. These techniques include introducing systematic
coding instructions for framework annotations as well as code reuse possibilities into
the annotation language (e.g. inheritance and composition of annotation structures). We
also describe tools that enable the generation of roles and their properties based on other
roles, specific (often recurring) role types, or source code.

3. Standards for Framework Specialization Instructions
Clearly, any non-trivial framework can be used in various ways and thus there are nu-
merous options on how to annotate a framework. In practice, the framework annotator
must decide what kind of assistance she wants to give for the framework users. Adding
constraints will give the users better guidance, but at the same time they will loose some
of their freedom. We argue that it is better to first provide annotations for quite a narrow
framework reuse interface, and later modify the annotations and add new ones to enable
more advanced ways of using the framework. This means that it is advisable to first
make annotations for the most relevant framework hot spots.

Even after choosing the relevant hot spots there still remains a number of possibilities in
making the actual annotations. However, we argue that is possible to introduce system-
atic coding conventions and good practices for annotating frameworks and that these
annotation standards are crucial when developing the process of framework specializa-
tion annotation. By systemizing framework annotation we ease the overall burden of
making large annotations and thus leverage the problems discussed in section 2.

Many patterns that are used to introduce flexibility in hot spots occur over and over
again in different frameworks [8]. Consequently, there are also recurring schemas for
framework specialization. We argue that these recurring schemas can be polished into a
catalogue of best practices for framework annotation. In general, the annotations should
guide the framework specialization process in a clear and intuitive manner. The quality
of the annotations should be evaluated with empirical usability analyses.

D e t e r m i n i n g F r a m e wo r k ’ s H o t S p o t s
In order to develop a framework annotation, we must have enough information about
the framework’s structure and its intended use. In an ideal situation the framework de-
veloper herself does the annotation, which makes the annotation process smooth and the
results accurate. However, if the framework developer is not available for making the
annotation, we must rely on interviewing current framework users, studying textual and
graphical documents of the framework, and examining the framework source code and
example applications derived from the framework.

During framework analysis we should first gain a basic understanding of the frame-
work’s hot spots. According to Pree, template and hook methods are obvious candidates
when trying to locate the hot spots [6]. Demeyer claims that almost all hot spots can be
found by analyzing overridden methods, because polymorphism needed in hook meth-
ods is usually implemented using method overriding [13].

There are usually hundreds of overriding relationships between methods in any non-
trivial application framework. That is why we need an effective way to separate those
important hook methods that actually constitute the framework’s reuse interface from
other overriding methods that are only used internally and are thus irrelevant to the
framework user. For this purpose we propose locating the framework’s abstract con-
cepts that correspond to a set of selected abstract root classes of the inheritance trees in
the framework’s implementation. From these abstract classes we rule out framework’s
internal interfaces (as which we classify interfaces that don’t have several concrete im-
plementations) and interfaces that only define additional behavior that can be imple-
mented in arbitrary classes (as which we classify interfaces that don’t describe the main
purpose of any class, e.g. listener interfaces). The methods that are left (optionally)
overridable in the abstract concepts constitute the relevant hook methods of the hot
spots in the framework.

S t r u c t u r i n g F r a m e wo r k A n n o t a t i o n s
Before actually implementing an annotation for a framework, the overall structure of the
annotation must be planned. Instead of using a huge monolith annotation to model the
framework’s entire reuse interface, we suggest that separate partial annotations are de-
fined at least for each individual hot spot. We argue that by splitting the reuse interface
description we make framework annotation more manageable and framework adapta-
tion more intuitive. It is far easier to develop annotations as smaller entities, because we
typically have to make adjustments to them even after framework initialization. If we
have to modify an annotation after it has been taken into use, we always have to reini-
tialize it. Therefore it is beneficial, if we don’t have to reinitialize everything after a
small adjustment.

There are different types of partial framework annotations that constitute the whole an-
notation of the framework reuse interface. These include concept annotations that
model the refinement of the framework’s abstract concepts, interface annotations that
are used to add interface implementations into existing classes, and connection anno-
tations that provide classes with new methods describing interactions between two or
more other abstract concepts. In addition, there are initialization annotations that pro-
vide assistance for setting up the main class (and a minimal working application) and all
the necessary machinery for the application initialization as well as coding convention
annotations that are used to provide existing classes with code that conforms to specific
conventions.

In practice, annotations are usually combinations of these annotation archetypes. We
suggest that annotation development is started out by examining the framework source
code and locating the interfaces and classes that result in concept annotations, an ini-
tialization annotation, and possibly some interface annotations. The need for separate
connection annotations typically arises when modeling the internal class structure, for
example when describing algorithms defined in method bodies, modeling data fields
that are needed to implement the algorithms, and specifying constructors required to
initialize the fields.

O r g a n i z i n g D e p e n d e n c i e s
Special attention should be paid to organizing the dependencies between the roles in
annotations, since they affect the order of framework specialization steps. The de-
pendencies should produce sequences of programming tasks that force the user to com-
plete clearly separated parts in the whole framework adaptation process. The dependen-
cies must be designed so that following the resulting sequence of tasks is logical. Tasks
should not force the developer to jump from making one thing to another that seems to
have no logical connection to the previous task.

A good design principle is to develop framework annotations so that each time the user
has done all the mandatory tasks covered by the roles she has instantiated (i.e. there are
enough valid contracts for all roles with respect to their cardinalities), she has a working
version of her application that she can compile, run and test. With optional tasks she can
add new features to the application, and the optional tasks may, in turn, cause new man-
datory tasks to appear.

There are of course trivial dependencies like the dependency between a subclass role
and a super class role. Determining these dependencies can be considered mechanical
and their construction can even be automated, as we will see in section 5.

However, when creating templates for method bodies, for example, we typically en-
counter more complex dependencies. For instance, consider a framework hot spot that
involves overriding a method that returns the instances of framework subclasses that are
defined in the application. Should we organize the role dependencies so that the frame-
work specializer is first asked to implement the subclasses and after that the instantia-
tion method or vice versa? We argue that a good rule of thumb in organizing dependen-
cies is to reflect the order in which the resulting application code gets executed. Ac-
cording to this rule, we would organize the dependencies in such a manner that the
skeleton for the instantiation method gets created first and it is supplemented with a new
instantiation statement every time the application developer defines a new subclass.

D o c u m e n t i n g t h e A n n o t a t i o n s
Before an annotation is ready to be used it must be documented for the application de-
veloper. First of all, each part of the annotation must have a general description. The
description should clearly state the purpose of the hot spot and its dependencies to other
hot spots, so that the application developer can determine whether the part of the anno-
tation at hand offers help for accomplishing the desired task. Especially, the initializa-
tion hot spot should be clearly identified as being the suggested starting point for appli-
cation development.

Whenever possible the documentation template should be made context sensitive by
referring to the names of the program elements already bound to other roles. We also

suggest linking the annotation documentation to other documentation, for example to
the external reference documentation for the framework implementation.

4. Reuse Features and Wizards for the Annotation Language
In order to make the framework annotations themselves more compact we can naturally
develop the language and incorporate special reuse features in it. Such features could
include annotation inheritance and annotation composition.

Annotation inheritance is exemplified in figure 4.1. The figure represents how our ex-
ample framework annotation in figure 2.1 could have been based on a general annota-
tion describing class inheritance. In figure 4.1 the roles Base and Sub describe the
properties of a super class and a subclass. The dotted arrows from the roles in the frame-
work specific annotation to Base and Sub show how the generic inheritance situation
that they describe is reused, e.g., in ToolExpert and DerivedToolExpert. The benefit is
that we don’t have to duplicate the inheritance constraint or any other role properties
that are related to a situation where one role describes a base class and another describes
a subclass8.

Annotation for
inheritance

Tool

Worker

ToolExpert

fw

mycompany

FREDExpert

EclipseExpert

FREDToolSet

Eclipse

ToolExpertWorker1..1

DerivedWorker0..n

DerivedToolExpert1..1

DerivedTool0..n

Worker1..1

Tool1..1

ToolExpert1..1

Base0..n

Sub0..n

inherit: Base

Implementation Framework
annotation

Figure 4.1: Using inheritance in framework annotations

The core of our annotation language doesn’t fix the target language for which annota-
tions are made. Actually, the targets of the roles don’t even have to be programming
language structures. However, when an annotation language is constructed for a par-
ticular domain, we must introduce special types of roles, constraints, and templates ac-
cording to the needs of the target language. In the context of object-oriented frame-

8 We have left the methods and method roles out from the figure to keep it readable. The generic inheritance

annotation enables also the reuse of constraints and templates related to method overriding even though that is not
visible in the figure.

works, e.g., the target language is an object-oriented programming language and there
should be roles for classes, methods, and fields, for example.

In an annotation language that is fixed for a certain domain (target language), it is pos-
sible to create dedicated graphical wizards that help in specifying recurring roles and
their properties. A typical example of this is making roles for subclassing or for over-
riding a method. Similar constraints (inheritance and overriding relationships) recur in
these roles. In order to facilitate the introduction of these roles, we may provide wizards
that help in creating the constraint and the templates. In order to make a subclass role,
for example, the annotation maker only has to choose the super class role for which the
subclass role is made. The subclass role wizard can generate sensible implementations
for all the other properties of the role (e.g. a suitable name, an inheritance constraint,
and templates for code generation and role binding) based on that one selection.

As mentioned earlier, we suggest separating code generation and constraint checking in
a framework annotation language. This naturally causes a little more work for the an-
notation maker, since code generation must reflect the constraints specified in the role.
In order to ease the burden of making code templates we suggest code template genera-
tion based on the role constraints. Typically a meaningful code generation template (and
also a documentation template) can be made based on the constraints declared for a role.
This also helps in keeping the constraints and templates consistent with each other.

5. Concept Analysis for Generating Roles from Source Code
When we want to annotate the reuse interface of a framework with roles we have two
objectives that must be brought into balance. First, we try to manage with as few roles
as possible. This means that the size of the set of program elements represented by any
particular role should be maximized. On the other hand, the cohesion of the set should
be maximized also. This problem resembles the general modularity problem of software
engineering where the goal is to divide a software system into modules with loose
coupling between modules and strong cohesion within them.

Concept analysis is a method for identifying commonalities within systems. It has been
successfully applied for semi-automatic modularization of software systems [14, 15] as
well as for detecting instances of design patterns without a predefined pattern library
[16]. We argue that concept analysis can also be used to extract role-based specializa-
tion instructions from various kinds of framework descriptions or source code.

In general, concept analysis provides a way to discover sensible groupings of objects
that have common attributes in a certain context [14]. Informally, a concept can be de-
fined as a collection of all the objects that share a set of attributes in a given context.
The set of common attributes of the concept is called the concept’s intent and the set of
objects belonging to the concept is called the concept’s extent.

In order to extract a role-based annotation that defines the reuse interface of a frame-
work we can select relevant source code entities and their properties from both the
framework itself and its available specializations and use them as concept analysis ob-
jects and attributes. For example, consider the framework given in figure 2.1. If we were
to extract class roles to annotate that framework, we could locate the classes in the
framework’s and its example applications’ source code and use them as concept analy-
sis objects. Selected characteristics of those classes could then be defined as attributes,
and the context could be expressed as a table showing which characteristics each class
has.

The appropriate selection of attributes is crucial for getting accurate results from the
analysis. In figure 5.1 we have decided to use the inheritance and association relation-
ships visible in figure 2.1 as attributes. In addition to the abstract framework classes in
figure 2.1, we assume that we have knowledge of some concrete applications-specific
subclasses for Worker (Consultant, not visible in figure 2.1), Tool (FREDToolSet,
Eclipse), and ToolExpert (FREDExpert, EclipseExpert). We use also the possible con-
creteness of classes as an attribute. Note that Worker and Tool don’t have any attributes.
We compensate that in the analysis by introducing two additional attributes (name
Worker, name Tool).

attributes

is concrete inherits
Worker

inherits Tool inherits
ToolExpert

knows Tool

Worker

Tool

ToolExpert √ √

Consultant √ √

FREDToolSet √ √

Eclipse √ √

FREDExpert √ √ √

ob
je

ct
s

EclipseExpert √ √ √

Figure 5.1: A context for determining class roles

It is possible to mechanically determine the concepts of a given context [15] and to form
a concept lattice that shows the subconcept relationships9 between the concepts (see
figure 5.2 for an example based on the context given in figure 5.1). After the concept
lattice has been formed, a suitable set of concepts can be chosen as a blueprint for the
annotation to be generated. The extent of each selected concept will be translated to a
role and the intent of the concept to a set of constraints for that role.

In the translation process we are looking for a set of roles where each program element
(i.e. each concept analysis object) plays exactly one role (i.e. belongs to exactly one ex-
tent). Unfortunately, in a general case an object may belong to a number of extents in a
concept lattice (for instance, ToolExpert belongs to the extents of c2, c6, c7, and top in
figure 5.2). However, we can form a concept partition (i.e. a set of concepts where each
object takes part in exactly one concept) from any concept lattice [15]. The concepts in
the partition can then be translated to a set of roles that forms an annotation for that
piece of code of which the extents of the concepts were originally derived from. In
figure 5.2 concepts from c0 to c5 form a partition that corresponds to the annotation
given in figure 2.1 (the only exception is that there is just one concept for ToolExpert).

As this example shows, it is fairly straightforward to use concept analysis to translate a
set of selected source code structures to a role-based description of their properties and
relationships. Our preliminary experiments with this method suggest that it is possible
to automatically extract up to 50 % of a framework reuse interface annotation from the
source code of the framework itself and a set of representative example applications de-
rived from the framework [17].

9 A concept is a subconcept of another concept if its extent is a subset of that other concept’s extent.

name extent & intent

top {Worker, Tool, ToolExpert, Consultant, FREDToolSet,
Eclipse, FREDExpert, EclipseExpert}, ∅

c8 {Consultant, FREDToolSet, Eclipse, FREDExpert,
EclipseExpert}, {is concrete}

c7 {ToolExpert, FREDExpert, EclipseExpert},
{knows Tool}

c6 {ToolExpert, Consultant}, {inherits Worker}

c5 {FREDExpert, EclipseExpert},
{is concrete, inherits ToolExpert, knows Tool}

c4 {FREDToolSet, Eclipse}, {is concrete, inherits Tool}

c3 {Consultant}, {is concrete, inherits Worker}

c2 {ToolExpert}, {inherits Worker, knows Tool}

c1 {Tool}, {name Tool}

c0 {Worker}, {name Worker}

bot ∅, {name Worker, name Tool, is concrete, inherits
Worker, inherits Tool, inherits ToolExpert, knows Tool}

c8 c7

c5

top

c6

c4 c3 c2 c1 c0

bot

Figure 5.2: A concept lattice and an accompanying key

6. The FRED Environment
FRED (Framework Editor for Java) is a prototype of a programming environment in-
tended for aiding framework-based software development [11, 12, 17, 18, 19]. FRED
implements an annotation language that can be used to specify the hot spots of a frame-
work. The language defines the format of the annotation in terms of role-based speciali-
zation patterns as described in section 2. The tool uses the specialization patterns to
provide goal-oriented assistance for application developers using the framework. This
assistance includes dynamically changing context-sensitive documentation, automatic
code generation, and validation of existing code against the requirements posed for the
applications using the framework.

The user interface of FRED is shown in figure 6.1. In the figure, the user has created a
project (MyCompany) where she has three pattern instances: Inheritance (the pattern
describing generic inheritance relationships), Organization (the annotation for the or-
ganization framework introduced in section 2), and MyCompany (the contracts related
to her particular specialization of the framework). The pattern instances as well as their
relationships to one another are visible in the Pattern Assembly view in the top left
corner. Pattern View on the bottom left displays the contracts (i.e. those roles that are
already bound) of the selected pattern together with the programming tasks associated
with it. A description of the selected task is shown below the task list.

In general, the tasks can either guide the user in providing program elements to be
bound to roles or instruct on how to fix possible constraint violations the already bound
elements cause. Some of the tasks are mandatory, while some of them are optional.
Also, some tasks are mutually ordered and must be solved in a certain sequence.

All the tasks in figure 6.1 are grouped under the Organization node, which reflects the
fact that all the tasks are related to the specialization of the organization framework.
There are optional tasks for providing more concrete tool classes (the user has already
defined two tools: Eclipse and FREDToolSet) and worker classes (there is only one sub-

class for worker, namely ToolExpert, which is defined on the framework’s side). There
is also a mandatory task to provide a ToolExpert subclass that would correspond to the
FREDToolSet class since the annotation requires there to be exactly one concrete tool
expert class for each concrete tool. Note, however, that there isn’t a similar task for
identifying a tool expert class for Eclipse. This is because there already exists a valid
contract that binds EclipseExpert for that purpose.

Figure 6.1 The FRED framework engineering environment

Source code for realizing the tasks can be provided in several ways: by coding from
scratch, by introducing a binding to a suitable class or method that already exists, or by
tailoring a default code snippet generated by FRED. Figure 6.1 shows how the user has
selected to use automatic code generation to perform the selected task. The dialog on
the right shows a code snippet that has been adapted to this situation based on the tem-
plates defined for the role corresponding to the current task as well as the selections the
user has made previously. Once the user pushes the Finish button, the code will be in-
serted into a file for further editing.

FRED provides a dedicated Java Editor (visible in the middle in figure 6.1) that allows
the user to edit her source files. Java Editor parses the source incrementally enabling
interactive constraint checks and accurate insertion of generated code. The editor not
only checks the static typing rules of the Java language, but also the architectural rules
of the framework. Changes in the source code are monitored as the user types it in, and
possible violations of constraints immediately result in new repairing tasks. Hence, the
proper use of the framework is constantly validated and supervised by the system.

7. Conclusion
It is already widely accepted that tool support is practical and useful for aiding the spe-
cialization of certain kinds of frameworks. Visual builders for constructing user inter-
faces have been standard parts of commercial IDEs for quite some time. There have
even been attempts to generalize the idea of visual builders to allow the composition of
applications from arbitrary components as long as they conform to a standardized com-
ponent interface or protocol. In our view, these experiences together with our own ex-
periments show that tool support can become a significant factor in framework engi-
neering; not perhaps so much in designing and constructing them, but in documenting
them and guiding their usage.

We see framework specialization as a challenging task for which tool support is of vital
importance. According to our vision, future frameworks are accompanied with frame-
work-specific programming environments that both guide and control application pro-
grammers in creating applications according to the conventions of the framework.

In practice, a framework usage environment should offer at least context-sensitive
documentation that dynamically adjusts to the choices the developer makes as well as
code generation to automate the production of skeletal implementations and trivial de-
tails, so that the developer can concentrate on those parts of the application that are
genuinely application-specific. It is also important to maintain an explicit connection
between the constraint annotations and source code, in order to be able to validate code
against constraints even if it hasn’t been generated by the tool or it has been modified
later on.

We believe that it is possible to describe the intended rules governing the framework’s
specializations with a precise role-based formalism. It is clear that a thorough and sys-
tematic annotation of a framework’s specialization interface raises the development
costs. However, we argue that these costs are relatively low when compared to the
framework development costs on the whole and, furthermore, the savings gained in
training and mentoring will be considerable, especially if many users are going to spe-
cialize the same framework.

Moreover, our early experiences indicate that it is possible to reduce the framework an-
notation costs substantially by using the techniques presented in this paper. For exam-
ple, a significant portion of a framework annotation can be extracted from the source
code of the framework and the example applications using the framework. In addition, it
is possible to introduce advanced reuse features (e.g. inheritance and composition) into
the annotation language itself and thus make annotations more compact and more man-
ageable.

References
[1] Basili V., Briand L., Melo W., How Reuse Influences Productivity in Object-Oriented Systems.

Communications of the ACM 39, 10, 1996, 104-116.
[2] Rine D., Nada N., Three Empirical Studies of a Software Reuse Reference Model. Software —

Practice and Experience 30, 6, 2000, 685-722.
[3] Johnson R., Foote B., Designing Reusable Classes. Journal of Object-Oriented Programming 1, 5,

1988, 22-35.
[4] Deutsch L., Design Reuse and Frameworks in the Smalltalk-80 System. In: Biggerstaff T., Perlis A.

(eds.), Software Reusability Vol. II, ACM Press, 1989, 57-71.
[5] Fayad M., Schmidt D., Johnson R., (eds.), Building Application Frameworks — Object-Oriented

Foundations of Framework Design. Wiley, 1999.
[6] Pree W., Design Patterns for Object-Oriented Software Development. Addison-Wesley, 1995.
[7] Riehle R., Framework Design — A Role Modeling Approach. Ph.D. thesis, ETH Zürich, Institute of

Computer Systems, 2000.
[8] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns — Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.
[9] van Gurp J., Bosch J., Design, Implementation, and Evolution of Object Oriented Frameworks:

Concepts and Guidelines. Software — Practice & Experience 31, 3, 2001, 277-300.
[10] Krasner G., Pope S., A Cookbook for Using the Model-View-Controller User Interface Paradigm in

Smalltalk-80. Journal of Object-Oriented Programming 1, 3, 1988, 26-49.
[11] Viljamaa A., Pattern-Based Framework Annotation and Adaptation — A Systematic Approach.

Licentiate thesis, Report C-2001-52, Department of Computer Science, University of Helsinki,
2001.

[12] Hautamäki J., Task-Driven Framework Specialization — Goal-Oriented Approach. Licentiate thesis,
Report A-2002-9, Department of Computer and Information Sciences, University of Tampere, 2002.

[13] Demeyer S., Analysis of Overridden Methods to Infer Hot Spots. In: Proceedings of ECOOP’98
Workshops, Demos, and Posters (Workshop Reader), Brussels, Belgium, July 1998, Springer LNCS
1543, 66-67.

[14] Siff M., Reps T., Identifying Modules via Concept Analysis. In: Proceedings of International
Conference on Software Maintenance (ICSM’97), Bari, Italy, October 1997, 170-178.

[15] Siff M., Reps T., Identifying Modules via Concept Analysis. TR-1337, Computer Sciences Depart-
ment, University of Wisconsin, Madison, WI, 1998.

[16] Tonella P., Antoniol G., Object Oriented Design Pattern Inference. In: Proceedings of International
Conference on Software Maintenance (ICSM’99), Oxford, England, August-September 1999, IEEE
Computer Society Press, 1999, 230-239.

[17] Viljamaa J., Automatic Extraction of Framework Specialization Patterns. Licentiate thesis, Submit-
ted for review and publication, Department of Computer Science, University of Helsinki, 2002.

[18] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa A., Viljamaa J., Generating
Application Development Environments for Java Frameworks. In: Proceedings of 3rd International
Conference on Generative and Component-Based Software Engineering (GCSE’01), Erfurt,
Germany, September 2001, Springer LNCS 2186, 163-176.

[19] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa A., Viljamaa J., Annotating Reusable
Software Architectures with Specialization Patterns. In: Proceedings of Working IEEE/IFIP
Conference on Software Architecture (WICSA 2001), Amsterdam, Netherlands, August 2001, IEEE
Computer Society Press, 171-180.

	Introduction
	Role-Based Framework Specialization Instructions
	Standards for Framework Specialization Instructions
	Reuse Features and Wizards for the Annotation Language
	Concept Analysis for Generating Roles from Source Code
	The FRED Environment
	Conclusion
	References

